An Overview of the IRanges package

Patrick Aboyoun, Michael Lawrence, Hervé Pages

Edited: February 2018; Compiled: November 25, 2024

Contents

1 Introduction

2 IRangesobjects
2.1 Normality.
2.2 Lists of IRangesobjectso
2.3 Vector Extraction oo
2.4 Finding Overlapping Ranges
2.5 Counting Overlapping Ranges
2.6 Finding NeighboringRanges

2.7 TransformingRanges.

2.71 Adjusting starts, ends and widths.
2.7.2 Making ranges disjoint oo Lo
2.7.3 Other transformations.

2.8 SetOperations. o

3 Vector Views,

3.1 CreatingViews
3.2 Aggregating Views Lo

4 Lists of Atomic Vectors.

5 Session Information

Introduction

—_

When analyzing sequences, we are often interested in particular consecutive subsequences. For
example, the a vector could be considered a sequence of lower-case letters, in alphabetical
order. We would call the first five letters (a to e) a consecutive subsequence, while the
subsequence containing only the vowels would not be consecutive. It is not uncommon for
an analysis task to focus only on the geometry of the regions, while ignoring the underlying
sequence values. A list of indices would be a simple way to select a subsequence. However,
a sparser representation for consecutive subsequences would be a range, a pairing of a start

position and a width, as used when extracting sequences with window.

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

Two central classes are available in Bioconductor for representing ranges: the /Ranges class
defined in the /Ranges package for representing ranges defined on a single space, and the
GRanges class defined in the GenomicRanges package for representing ranges defined on
multiple spaces.

In this vignette, we will focus on /IRanges objects. We will rely on simple, illustrative example
datasets, rather than large, real-world data, so that each data structure and algorithm can
be explained in an intuitive, graphical manner. We expect that packages that apply /Ranges
to a particular problem domain will provide vignettes with relevant, realistic examples.

The /Ranges package is available at bioconductor.org and can be downloaded via BiocMan
ager::install:

\

if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager: :install("IRanges")

Vv +

\

library(IRanges)

2 IRanges objects

To construct an /Ranges object, we call the IRanges constructor. Ranges are normally
specified by passing two out of the three parameters: start, end and width (see help (IRanges)
for more information).

> irl <- IRanges(start=1:10, width=10:1)
> irl

IRanges object with 10 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 10 10
[2] 10
[3] 10
[4] 10
[5] 10
[6] 10
[7] 10
[8] 10
[9] 10
[10] 10

O 00 N O U & WN
H N W S UO N 0O

=
(<)

> ir2 <- IRanges(start=1:10, end=11)
> ir3 <- IRanges(end=11, width=10:1)
> identical(irl, ir2) && identical(irl, ir3)

[1] FALSE

> ir <- IRanges(c(1, 8, 14, 15, 19, 34, 40),

+ width=c(12, 6, 6, 15, 6, 2, 7))
> ir

IRanges object with 7 ranges and 0 metadata columns:
start end width

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

<integer> <integer> <integer>

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15
[5] 19 24 6
[6] 34 35 2
[7] 40 46 7

All of the above calls construct the same /Ranges object, using different combinations of the
start, end and width parameters.

Accessing the starts, ends and widths is supported via the , and getters:
> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)
[1] 12 6 615 6 2 7

Subsetting an /Ranges object is supported, by numeric and logical indices:

> ir[1:4]

IRanges object with 4 ranges and 0@ metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

> ir[start(ir) <= 15]

IRanges object with 4 ranges and 0@ metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15

In order to illustrate range operations, we'll create a function to plot ranges.

plotRanges <- function(x, xlim=x, main=deparse(substitute(x)),
col="black", sep=0.5, ...)

height <- 1

>
+
+ {
+
+ if (is(xlim, "IntegerRanges"))

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

2.1

Figure 1: Plot of original ranges.

xlim <- c(min(start(xlim)), max(end(xlim)))
bins <- disjointBins(IRanges(start(x), end(x) + 1))
plot.new()
plot.window(xlim, c(0, max(bins)x(height + sep)))
ybottom <- bins * (sep + height) - height
rect(start(x)-0.5, ybottom, end(x)+0.5, ybottom + height, col=col, ...)
title(main)
axis(1)

+ + + + + + + + 4+

> plotRanges(ir)

Normality

Sometimes, it is necessary to formally represent a subsequence, where no elements are re-
peated and order is preserved. Also, it is occasionally useful to think of an /Ranges object as
a set of integers, where no elements are repeated and order does not matter.

The NormallRanges class formally represents a set of integers. By definition an IRanges
object is said to be normal when its ranges are: (a) not empty (i.e. they have a non-null
width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e. there
must be a non empty gap between 2 consecutive ranges).

There are three main advantages of using a normal IRanges object: (1) it guarantees a
subsequence encoding or set of integers, (2) it is compact in terms of the number of ranges,
and (3) it uniquely identifies its information, which simplifies comparisons.

The function reduces any IRanges object to a NormallRanges by merging redundant
ranges.

> reduce(ir)

IRanges object with 3 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 29 29
[2] 34 35 2
[3] 40 46 7

> plotRanges(reduce(ir))

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

2.2

2.3

2.4

reduce(ir)

Figure 2: Plot of reduced ranges.

Lists of /Ranges objects

It is common to manipulate collections of /Ranges objects during an analysis. Thus, the
IRanges package defines some specific classes for working with multiple /Ranges objects.

The IRangesList class asserts that each element is an /Ranges object and provides convenience
methods, such as start, end and width accessors that return IntegerList objects, aligning
with the /RangesList object. Note that IntegerList objects will be covered later in more
details in the "Lists of Atomic Vectors” section of this document.

To explicitly construct an /RangesList, use the TRangesList function.

> rl <- IRangesList(ir, rev(ir))

> start(rl)

IntegerList of length 2
[[1]] 1 8 14 15 19 34 40
[[2]] 40 34 19 15 148 1

Vector Extraction

As the elements of an /Ranges object encode consecutive subsequences, they may be used
directly in sequence extraction. Note that when a normal IRanges is given as the index, the
result is a subsequence, as no elements are repeated or reordered. If the sequence is a Vector
subclass (i.e. not an ordinary vector), the canonical [function accepts an /Ranges object.

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length=500),

+ seq(10, 0.001, length=500))

> xVector <- rpois(le7, lambda)

> yVector <- rpois(le7, lambda[c(251:1length(lambda), 1:250)])
> xRle <- Rle(xVector)

> yRle <- Rle(yVector)

> irextract <- IRanges(start=c(4501, 4901) , width=100)

> xRle[irextract]

integer-Rle of length 200 with 159 runs
Lengths: 12 1 1 1 2 1 1 1 1 2... 1 1 1 1 1 1 1 1 1
Values : 6 1 6 2 6 1 6 1 06 1... 912 6 510 9 6 9 12

Finding Overlapping Ranges

The function findOverlaps detects overlaps between two /Ranges objects.

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

2.5

2.6

2.7

2.7.1

ir

o I
) e —
0 10 20 30 40
Figure 3: Plot of ranges with accumulated coverage.

> ol <- findOverlaps(ir, reduce(ir))
> as.matrix(ol)

queryHits subjectHits
[1,] 1
[2,]
[3.1]
(4,1
[5,1
[6,]
[7,1]

N o uhs WN
WNR R RBRP 3

Counting Overlapping Ranges

The function coverage counts the number of ranges over each position.

> cov <- coverage(ir)

> plotRanges(ir)

> cov <- as.vector(cov)

> mat <- cbind(seq_along(cov)-0.5, cov)

> d <- diff(cov) !=0

> mat <- rbind(cbind(mat[d,1]+1, mat[d,2]), mat)
> mat <- mat[order(mat[,1]),]

> lines(mat, col="red", lwd=4)

> axis(2)

Finding Neighboring Ranges

The nearest function finds the nearest neighbor ranges (overlapping is zero distance). The
precede and follow functions find the non-overlapping nearest neighbors on a specific side.

Transforming Ranges

Utilities are available for transforming an /Ranges object in a variety of ways. Some transfor-
mations, like reduce introduced above, can be dramatic, while others are simple per-range
adjustments of the starts, ends or widths.

Adjusting starts, ends and widths

Perhaps the simplest transformation is to adjust the start values by a scalar offset, as per-
formed by the shift function. Below, we shift all ranges forward 10 positions.

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

> shift(ir, 10)

IRanges object with 7 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 11 22 12
[2] 18 23 6
[3] 24 29 6
[4] 25 39 15
[5] 29 34 6
[6] 44 45 2
[7] 50 56 7

There are several other ways to transform ranges. These include) . .

, , and . For example supports the adjustment of start, end
and width values, which should be relative to each range. These adjustments are vectorized
over the ranges. As its name suggests, the ranges can only be narrowed.

> narrow(ir, start=1:5, width=2)

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 2 2
[2] 9 10 2
[3] 16 17 2
[4] 18 19 2
[5] 23 24 2
[6] 34 35 2
[7] 41 42 2

The function ensures every range falls within a set of bounds. Ranges are contracted

as necessary, and the ranges that fall completely outside of but not adjacent to the bounds
are dropped, by default.

> restrict(ir, start=2, end=3)

IRanges object with 1 range and 0@ metadata columns:

start end width

<integer> <integer> <integer>

[1] 2 3 2
The function extends so that the remaining left and right regions adjacent

to the narrowed region are also returned in separate /Ranges objects.
> threebands(ir, start=1:5, width=2)

$left
IRanges object with 7 ranges and 0 metadata columns:
start end width
<integer> <integer> <integer>
[1] 1 0 0
[2] 8 8 1
[3] 14 15 2

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

[4] 15 17 3
[5] 19 22 4
[6] 34 33 0
[7] 40 40 1
$middle
IRanges object with 7 ranges and 0@ metadata columns:
start end width
<integer> <integer> <integer>
[1] 1 2 2
[2] 9 10 2
[3] 16 17 2
[4] 18 19 2
[5] 23 24 2
[6] 34 35 2
[7] 41 42 2
$right
IRanges object with 7 ranges and 0 metadata columns:
start end width
<integer> <integer> <integer>
[1] 3 12 10
[2] 11 13 3
[3] 18 19 2
[4] 20 29 10
[5] 25 24 0
[6] 36 35 0
[7] 43 46 4

The arithmetic operators +, - and * change both the start and the end /width by symmetrically
expanding or contracting each range. Adding or subtracting a numeric (integer) vector to an
IRanges causes each range to be expanded or contracted on each side by the corresponding
value in the numeric vector.

> ir + seq_len(length(ir))

IRanges object with 7 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 0 13 14
[2] 6 15 10
[3] 11 22 12
[4] 11 33 23
[5] 14 29 16
[6] 28 41 14
[7] 33 53 21

The « operator symmetrically magnifies an /Ranges object by a factor, where positive con-
tracts (zooms in) and negative expands (zooms out).

> ir x -2 # double the width

IRanges object with 7 ranges and 0@ metadata columns:

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

disjoin(ir)

Figure 4: Plot of disjoined ranges.

start end width
<integer> <integer> <integer>

[1] -5 18 24
[2] 5 16 12
[3] 11 22 12
[4] 7 36 30
[5] 16 27 12
[6] 33 36 4
[7] 36 49 14

WARNING: The semantic of these arithmetic operators might be revisited at some point.
Please restrict their use to the context of interactive visualization (where they arguably provide
some convenience) but avoid to use them programmatically.

2.7.2 Making ranges disjoint

A more complex type of operation is making a set of ranges disjoint, i.e. non-overlapping.
For example, returns a disjoint set of three ranges for each input range.

The function makes an /Ranges object disjoint by fragmenting it into the widest
ranges where the set of overlapping ranges is the same.

> disjoin(1ir)

IRanges object with 10 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 7 7
[2] 8 12 5
[3] 13 13 1
[4] 14 14 1
[5] 15 18 4
[6] 19 19 1
[7] 20 24 5
[8] 25 29 5
[9] 34 35 2
[10] 40 46 7

> plotRanges(disjoin(ir))

A variant of is , which divides the ranges into bins, such that the
ranges in each bin are disjoint. The return value is an integer vector of the bins.

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

> disjointBins(ir)

[111212311

2.7.3 Other transformations

Other transformations include reflect and flank. The former “flips” each range within a
set of common reference bounds.

> reflect(ir, IRanges(start(ir), width=width(ir)*2))

IRanges object with 7 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 13 24 12
[2] 14 19 6
[3] 20 25 6
[4] 30 44 15
[5] 25 30 6
[6] 36 37 2
[7] 47 53 7

The flank returns ranges of a specified width that flank, to the left (default) or right, each
input range. One use case of this is forming promoter regions for a set of genes.

> flank(ir, width=seq_len(length(ir)))

IRanges object with 7 ranges and 0@ metadata columns:

start end width
<integer> <integer> <integer>

[1] 0 0 1
[2] 6 7 2
[3] 11 13 3
[4] 11 14 4
[5] 14 18 5
[6] 28 33 6
[7] 33 39 7

2.8 Set Operations

Sometimes, it is useful to consider an /Ranges object as a set of integers, although there is
always an implicit ordering. This is formalized by NormallRanges, above, and we now present
versions of the traditional mathematical set operations complement, union, intersect, and
difference for IRanges objects. There are two variants for each operation. The first treats
each /Ranges object as a set and returns a normal value, while the other has a “parallel”
semantic like pmin/pmax and performs the operation for each range pairing separately.

The complement operation is implemented by the gaps and pgap functions. By default, gaps
will return the ranges that fall between the ranges in the (normalized) input. It is possible to
specify a set of bounds, so that flanking ranges are included.

> gaps(ir, start=1, end=50)

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

gaps(ir, start = 1, end = 50)
HEE B
T T

0 10 20 30 40 50

Figure 5: Plot of gaps from ranges.

IRanges object with 3 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 30 33 4
[2] 36 39 4
[3] 47 50 4

> plotRanges(gaps(ir, start=1, end=50), c(1,50))

pgap considers each parallel pairing between two /IRanges objects and finds the range, if any,
between them. Note that the function name is singular, suggesting that only one range is
returned per range in the input.

The remaining operations, union, intersect and difference are implemented by the [p]lunion,
[plintersect and [p]setdiff functions, respectively. These are relatively self-explanatory.

Vector Views

3.1

3.2

The [Ranges package provides the virtual Views class, which stores a vector-like object,
referred to as the “subject”, together with an /Ranges object defining ranges on the subject.
Each range is said to represent a view onto the subject.

Here, we will demonstrate the RleViews class, where the subject is of class Rle. Other Views
implementations exist, such as XStringViews in the Biostrings package.

Creating Views

There are two basic constructors for creating views: the Views function based on indicators
and the slice based on numeric boundaries.

xViews <- Views(xRle, xRle >= 1)

xViews <- slice(xRle, 1)

XRleList <- RleList(xRle, 2L * rev(xRle))
xViewsList <- slice(xRleList, 1)

vV V V V

Note that RleList objects will be covered later in more details in the “Lists of Atomic Vectors”
section of this document.

Aggregating Views

While sapply can be used to loop over each window, the native functions viewlaxs, viewMins,
viewSums, and viewMeans provide fast looping to calculate their respective statistical sum-
maries.

11

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/Biostrings

An Overview of the /Ranges package

> head(viewSums(xViews))
[11] 111112
> viewSums (xViewsList)

IntegerList of length 2
[[1]] 111112112316134...

[[2]]1 2 210 2210 8 12 22 16 20 74 12 ...

> head(viewMaxs(xViews))
[1]111112
> viewMaxs (xViewsList)

IntegerList of length 2

[[1]]1111121112121231...
[[2]]1 22422446164 12 10 4106 ...

4 Lists of Atomic Vectors

12637108116 4511511
21226422422222

352562832211211
42424222422222

In addition to the range-based objects described in the previous sections, the /Ranges package
provides containers for storing lists of atomic vectors such as integer or Rle objects. The
IntegerList and RleList classes represent lists of integer vectors and Rle objects respectively.
They are subclasses of the AtomicList virtual class which is itself a subclass of the List virtual

class defined in the S4Vectors package.

> showClass("RleList")

Virtual Class "RleList" [package "IRanges"]

Slots:

Name: elementType elementMetadata metadata
Class: character DataFrame_OR_NULL list
Extends:

Class "AtomicList", directly

Class "List", by class "AtomiclList", distance 2

Class "Vector", by class "AtomicList", distance 3

Class "list_OR_List", by class "AtomicList", distance 3
Class "Annotated", by class "AtomicList", distance 4

Class "vector_OR_Vector", by class "AtomicList", distance 4

Known Subclasses: "SimpleRleList", "RleViews", "CompressedRleList"

As the class definition above shows, the RleList class is virtual with subclasses SimpleRleList
and CompressedRleList. A SimpleRleList class uses an ordinary R list to store the underlying
elements and the CompressedRleList class stores the elements in an unlisted form and keeps
track of where the element breaks are. The former “simple list" class is useful when the Rle
elements are long and the latter “compressed list" class is useful when the list is long and/or

sparse (i.e. a number of the list elements have length 0).

12

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/S4Vectors

An Overview of the /Ranges package

In fact, all of the atomic vector types (logical, integer, numeric, complex, character, raw, and
factor) have similar list classes that derive from the List virtual class. For example, there is
an IntegerList virtual class with subclasses SimplelntegerList and CompressedintegerList.

Each of the list classes for atomic sequences, be they stored as vectors or Rle objects, have a
constructor function with a name of the appropriate list virtual class, such as IntegerList, and
an optional argument compress that takes an argument to specify whether or not to create
the simple list object type or the compressed list object type. The default is to create the
compressed list object type.

> args(IntegerlList)

function (..., compress = TRUE)
NULL

> cIntListl <- IntegerlList(x=xVector, y=yVector)
> cIntListl

IntegerList of length 2
[["x"]] 000 O00OOODOOOOOOO ... 0000000O00000O06OO
[['"y"]] 00 0O00O0OOOOOO0OOO ... 000000O0O0O0O0000OOOO

> sIntlList2 <- IntegerList(x=xVector, y=yVector, compress=FALSE)
> sIntlList2

IntegerList of length 2
[["'x"]] 00 0O00OOOOOOOOOO ... 000000O00O00000O0OO0O
[['"y"]] 00 0O00O0OODOOOO0OOO ...0o0O0OOOOOOOOOOOO

sparse integer list

xExploded <- lapply(xVector[1:5000], function(x) seq_len(x))
cIntList2 <- IntegerList(xExploded)

sIntList2 <- IntegerlList(xExploded, compress=FALSE)
object.size(cIntList2)

vV V. V VvV V

33208 bytes
> object.size(sIntList2)
294016 bytes

The function returns the number of elements in a Vector-derived object and, for a
List-derived object like “simple list" or “compressed list", the function returns an
integer vector containing the lengths of each of the elements:

> length(cIntlList2)
[1] 5000
> Rle(lengths(cIntlList2))

integer-Rle of length 5000 with 427 runs
Lengths: 780 1 208 1 1599 1 ... 1 1 1 1 1
Values : 0 1 0 1 0 1... 10 9 6 9 12

13

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

Just as with ordinary R list objects, List-derived object support the [[for element extraction,

for concatenating, and / for looping. When looping over sparse lists, the
“compressed list" classes can be much faster during computations since only the non-empty
elements are looped over during the / computation and all the empty elements

are assigned the appropriate value based on their status
> system.time(sapply(xExploded, mean))

user system elapsed
0.011 ©0.000 0.011

> system.time(sapply(sIntList2, mean))

user system elapsed
0.011 ©0.000 0.011

> system.time(sapply(cIntList2, mean))

user system elapsed
0.012 0.600 0.011

> identical(sapply(xExploded, mean), sapply(sIntList2, mean))
[1] TRUE
> identical(sapply(xExploded, mean), sapply(cIntList2, mean))
[1] TRUE

Unlike ordinary R list objects, AtomicList objects support the (e.g. +, ==, &), (e.g.

,), (e-g. ,), (e-g. , max, sum), and (e.g. Re,
) group generics.

> xRleList > 0

RleList of length 2

[[11]

logical-Rle of length 10000000 with 197127 runs
Lengths: 780 1 208 1 1599 ... 1 91 1 927
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

[[2]1]

logical-Rle of length 10000000 with 197127 runs
Lengths: 927 1 91 1 5 ooo 1 208 1 780
Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> yRleList <- RleList(yRle, 2L * rev(yRle))
> xRleList + yRlelList

RleList of length 2

[[1]]

integer-Rle of length 10000000 with 1957707 runs
Lengths: 780 1208 1 13 1413 ... 5 1 91 1507 1419
Values : o 1 o 1 06 1 0... e 1 o 1 o6 1 o

[[2]]
integer-Rle of length 10000000 with 1957707 runs
Lengths: 419 1567 1 91 1 5 ...413 1 13 12068 1 780

14

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

Values : 0o 2 0 2 06 2 0... e 2 0 2 0 2 0
> sum(xRleList > 0 | yRleList > 0)

[1] 2165185 2105185

Since these atomic lists inherit from List, they can also use the looping function endoapply
to perform endomorphisms.

> safe.max <- function(x) { if(length(x)) max(x) else integer(0) }
> endoapply(sIntlList2, safe.max)

IntegerList of length 5000
[[1]] integer(0)

[[2]] integer (0O
[[3]] integer(0O
[[4]] integer(0O
[[5]] integer(0
[[6]] integer(0O
[[7]1]1 integer (0O
[[8]] integer (0O
[[9]] integer (0O
[[10]] integer(0)

)
)
)
)
)
)
)
)

<4990 more elements>
> endoapply(cIntList2, safe.max)

IntegerList of length 5000
[[1]] integer(0)

[[2]] integer(0)
[[3]1] integer(0)
[[4]] integer(0)
[[5]] integer(0)
[[6]] integer(0)
[[7]1] integer(0)
[[8]] integer(0)
[[9]] integer(0)
[[10]] integer(0)

<4990 more elements>
> endoapply(sIntlList2, safe.max)[[1]]

integer(0)

5 Session Information

Here is the output of sessionInfo() on the system on which this document was compiled:

R Under development (unstable) (2024-11-20 r87352)
Platform: aarch64-apple-darwin20
Running under: mac0S Ventura 13.7.1

15

http://bioconductor.org/packages/IRanges

An Overview of the /Ranges package

Matrix products: default
BLAS: /Library/Frameworks/R. framework/Versions/4.5-arm64/Resources/lib/1ibRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/1ibRlapack.dylib; LAPACK version 3

locale:
[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4 stats graphics grDevices utils datasets
[7] methods base

other attached packages:
[1] IRanges_2.41.1 S4Vectors_0.45.2 BiocGenerics_0.53.3
[4] generics_0.1.3

loaded via a namespace (and not attached):

[1] digest_0.6.37 fastmap_1.2.0 xfun_0.49

[4] knitr_1.49 htmltools_0.5.8.1 rmarkdown_2.29

[7] cli_3.6.3 compiler_4.5.0 tools_4.5.0

[10] evaluate_1.0.1 yaml_2.3.10 BiocManager_1.30.25
[13] rlang_1.1.4 BiocStyle 2.35.0

16

http://bioconductor.org/packages/IRanges

	1 Introduction
	2 IRanges objects
	2.1 Normality
	2.2 Lists of IRanges objects
	2.3 Vector Extraction
	2.4 Finding Overlapping Ranges
	2.5 Counting Overlapping Ranges
	2.6 Finding Neighboring Ranges
	2.7 Transforming Ranges
	2.7.1 Adjusting starts, ends and widths
	2.7.2 Making ranges disjoint
	2.7.3 Other transformations

	2.8 Set Operations

	3 Vector Views
	3.1 Creating Views
	3.2 Aggregating Views

	4 Lists of Atomic Vectors
	5 Session Information

