
Package ‘motifTestR’
November 21, 2024

Title Perform key tests for binding motifs in sequence data

Version 1.2.1

Description Taking a set of sequence motifs as PWMs, test a set of sequences
for over-representation of these motifs, as well as any positional features
within the set of motifs. Enrichment analysis can be undertaken using multiple
statistical approaches. The package also contains core functions to prepare
data for analysis, and to visualise results.

License GPL-3

Encoding UTF-8

URL https://github.com/smped/motifTestR

BugReports https://github.com/smped/motifTestR/issues

Depends Biostrings, GenomicRanges, ggplot2 (>= 3.5.0), R (>= 4.3.0),

Imports GenomeInfoDb, graphics, harmonicmeanp, IRanges, matrixStats,
methods, parallel, patchwork, rlang, S4Vectors, stats,
universalmotif

Suggests AnnotationHub, BiocStyle, BSgenome.Hsapiens.UCSC.hg19,
extraChIPs, ggdendro, knitr, MotifDb, rmarkdown, rtracklayer,
testthat (>= 3.0.0)

biocViews MotifAnnotation, ChIPSeq, ChipOnChip, SequenceMatching,
Software

LazyData false

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/motifTestR

git_branch RELEASE_3_20

git_last_commit 1e1004b

git_last_commit_date 2024-11-01

Repository Bioconductor 3.20

Date/Publication 2024-11-20

Author Stevie Pederson [aut, cre] (<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stevie Pederson <stephen.pederson.au@gmail.com>

1

https://github.com/smped/motifTestR
https://github.com/smped/motifTestR/issues
https://orcid.org/0000-0001-8197-3303

2 motifTestR-package

Contents
motifTestR-package . 2
ar_er_peaks . 3
ar_er_seq . 4
clusterMotifs . 4
countPwmMatches . 6
ex_pfm . 7
getClusterMatches . 7
getPwmMatches . 9
hg19_mask . 10
makeRMRanges . 11
plotMatchPos . 13
testClusterEnrich . 14
testClusterPos . 16
testMotifEnrich . 17
testMotifPos . 20
zr75_enh . 22

Index 23

motifTestR-package motifTestR: Perform Key Analyses on Transcription Factor Binding
Motifs

Description

The package motifTestR has been designed for two primary analyses of TFBMs, testing for posi-
tional bias and overall enrichment.

Details

The package motifTestR provides two primary functions for testing TFBMs within a set of se-
quences

• testMotifPos() for detecting positional bias within a set of test sequences

• testMotifEnrich() for testing overall enrichment of a TFBM within a set of test sequences

Motifs are also able to be clustered for analysis as a cluster, or for grouping results. Clusters from
external approaches can also be incorporated.

• testClusterPos() for detecting positional bias for matches to any motif annotated to a clus-
ter, within a set of test sequences

• testClusterEnrich() for testing overall enrichment of any TFBM annotated to a cluster,
within a set of test sequences

The main functions rely on lower-level functions such as:

• countPwmMatches() simply counts the number of matches within an XStringSet

• getPwmMatches() returns the position of matches within an XStringSet

• countClusterMatches() simply counts the number of matches to motifs annotated to a clus-
ter within an XStringSet

ar_er_peaks 3

• getClusterMatches() returns the position of matches to motifs annotated to a cluster within
an XStringSet

• makeRMRanges() which produces a set of random, matching ranges based on key characteris-
tics of the set of test sequences/ranges

A simple utility function is provided to enable visualisation of results

• plotMatchPos() enables visualisation of the matches within a set of sequences using multiple
strategies

Author(s)

Stevie Pederson

See Also

Useful links:

• https://github.com/smped/motifTestR

• Report bugs at https://github.com/smped/motifTestR/issues

ar_er_peaks A set of peaks with AR and ER detected

Description

A set of ChIP-Seq peaks where AR and ER were both detected

Usage

data("ar_er_peaks")

Format

An object of class GRanges of length 849.

Details

The subset of peaks found on chr1 which contained signal from at least two of AR, ER and
H3K27ac, taken from GSE123767. Peaks were resized to a uniform width of 400bp after down-
loading

Generation of these ranges is documented in system.file("scripts/ar_er_peaks.R", package
= "motifTestR")

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123767

Examples

data("ar_er_peaks")
ar_er_peaks

https://github.com/smped/motifTestR
https://github.com/smped/motifTestR/issues
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123767

4 clusterMotifs

ar_er_seq Sequences from peaks with AR and ER detected

Description

The genomic sequences obtained from the ar_er_peaks

Usage

data("ar_er_seq")

Format

An object of class DNAStringSet of length 849.

Details

These sequences represent the sequences obtained from BSgenome.Hsapiens.UCSC.hg19 for thw
peaks supplied as ar_er_peaks

Generation of these sequences is documented in system.file("scripts/ar_er_peaks.R", package
= "motifTestR")

Examples

data("ar_er_seq")
ar_er_seq

clusterMotifs Assign each motif to a cluster

Description

Cluster related motifs for testing as a group

Usage

clusterMotifs(
motifs,
type = c("PPM", "ICM"),
method = c("PCC", "EUCL", "SW", "KL", "ALLR", "BHAT", "HELL", "SEUCL", "MAN",
"ALLR_LL", "WEUCL", "WPCC"),

power = 1,
agglom = "complete",
thresh = 0.2,
plot = FALSE,
labels = FALSE,
cex = 1,
linecol = "red",
...

)

clusterMotifs 5

Arguments

motifs A list of universalmotifs or a list of PWMs

type Can be ICM or PPM

method The method to be used for determining similarity/distances

power Raise correlation matrices to this power before converting to a distance matrix.
Only applied if method is either "PCC" or "WPCC"

agglom Method to be used for agglomeration by hclust

thresh Tree heights below which motifs are formed into a cluster

plot Show tree produced by hclust. If requested the value set by thresh will be shown
as a horizontal line

labels, cex Passed to plot.hclust

linecol Passed to abline as the argument col

... passed to compare_motifs

Details

This builds on compare_motifs, enabling the assignment of each PWM to a cluster, and subsequent
testing of motifs as a cluster, rather than returning individual results.

Internally all matrices are converted to distance matrices and hclust is used to form clusters. By
default, options such as "EUCL", "MAN" produce distances, whilst similarity matrices are produced
when choosing "PCC" and other correlation based metrics. In these cases, the distance matrix is
obtained by taking 1 - similarity.

By default PWM labels are hidden (labels = FALSE), however these can be shown using labels =
NULL as explained in plot.hclust.

Raising the threshold will lead to fewer, larger clusters whilst leaving this value low will return a
more conservative approach, with more smaller clusters. The final decision as the best clustering
strategy is highly subjective and left to the user. Manual inspection of motifs within a cluster can
be performed using view_motifs, as shown in the vignette.

Value

Named vector with numeric values representing which cluster each motif has been assigned to.

Examples

Load the example motifs
data("ex_pfm")

Return a vector with each motif assigned a cluster
The default uses Pearson's Correlation Coefficient
clusterMotifs(ex_pfm)

Preview the settings noting that showing labels can clutter the plot
with large numbers of motifs. The defaults for Euclidean distance
show the threshold may need raising
clusterMotifs(ex_pfm, plot = TRUE, labels = NULL, method = "EUCL")

6 countPwmMatches

countPwmMatches Count the matches to a PWM within an XStringSet

Description

Count the matches to a PWM within an XStringSet

Usage

countPwmMatches(
pwm,
stringset,
rc = TRUE,
min_score = "80%",
mc.cores = 1,
...

)

Arguments

pwm A Position Weight Matrix

stringset An XStringSet

rc logical(1) Also find matches using the reverse complement of pwm

min_score The minimum score to return a match

mc.cores Passed to mclapply when analysing a list of PWMs

... Passed to countPWM

Details

Will simply count the matches within an XStringSet and return an integer. All matches are included.

Value

An integer vector

Examples

Load the example PWM
data("ex_pfm")
esr1 <- ex_pfm$ESR1

Load the example Peaks
data("ar_er_seq")
countPwmMatches(esr1, ar_er_seq)

Count all PWMs
countPwmMatches(ex_pfm, ar_er_seq)

ex_pfm 7

ex_pfm Example Position Frequency Matrices

Description

Example Position Frequency Matrices

Usage

data("ex_pfm")

Format

An object of class list of length 5.

Details

This object contains 5 PFMs taken from HOCOMOCOv11-coreA for examples and testing

Generation of this motif list is documented in system.file("scripts/ex_pfm.R", package =
"motifTestR")

Examples

data("ex_pfm")
ex_pfm$ESR1

getClusterMatches Find matches from a PWM cluster within an XStringSet

Description

Find matches from a PWM cluster within a set of sequences

Usage

getClusterMatches(
cl,
stringset,
rc = TRUE,
min_score = "80%",
best_only = FALSE,
break_ties = c("all", "random", "first", "last", "central"),
mc.cores = 1,
...

)

countClusterMatches(
cl,
stringset,

8 getClusterMatches

rc = TRUE,
min_score = "80%",
mc.cores = 1,
...

)

Arguments

cl A list of Position Weight Matrices, universalmotifs, with each element repre-
senting clusters of related matrices

stringset An XStringSet

rc logical(1) Also find matches using the reverse complement of PWMs in the
cluster

min_score The minimum score to return a match

best_only logical(1) Only return the best match

break_ties Method for breaking ties when only returning the best match Ignored when all
matches are returned (the default)

mc.cores Passed to mclapply

... Passed to matchPWM

Details

This function extends getPwmMatches by returning a single set of results for set of clustered motifs.
This can help remove some of the redundancy in results returned for highly similar PWMs, such as
those in the GATA3 family.

Taking a set of sequences as an XStringSet, find all matches above the supplied score (i.e. threshold)
for a list of Position Weight Matrices (PWMs), which have been clustered together as highly-related
motifs. By default, matches are performed using the PWMs as provided and the reverse comple-
ment, however this can easily be disabled by setting rc = FALSE.

The function relies heavily on matchPWM and Views for speed.

Where overlapping matches are found for the PWMs within a cluster, only a single match is re-
turned. The motif with the highest relative score (score / maxScore(PWM)) is selected.

When choosing to return the best match (best_only = TRUE), only the match with the highest rela-
tive score is returned for each sequence. Should there be tied scores, the best match can be chosen
as either the first, last, most central, all tied matches, or choosing one at random (the default).

Value

Output from getClusterMatches will be a list of DataFrames with columns: seq, score, direction,
start, end, from_centre, seq_width, motif and match

The first three columns describe the sequence with matches, the score of the match and whether the
match was found using the forward or reverse PWM. The columns start, end and width describe
the where the match was found in the sequence, whilst from_centre defines the distance between
the centre of the match and the centre of the sequence being queried. The motif column denotes
which individual motif was found to match in this position, again noting that when matches overlap,
only the one with the highest relative score is returned. The final column contains the matching
fragment of the sequence as an XStringSet.

Output from countClusterMatches will be a simple integer vector the same length as the number of
clusters

getPwmMatches 9

Examples

Load example PFMs
data("ex_pfm")
Cluster using default settings
cl_ids <- clusterMotifs(ex_pfm)
ex_cl <- split(ex_pfm, cl_ids)
Add optional names
names(ex_cl) <- vapply(ex_cl, \(x) paste(names(x), collapse = "/"), character(1))

Load example sequences
data("ar_er_seq")
Get all matches for each cluster
getClusterMatches(ex_cl, ar_er_seq)
Or Just count them
countClusterMatches(ex_cl, ar_er_seq)
Compare this to individual counts
countPwmMatches(ex_pfm, ar_er_seq)

getPwmMatches Find all PWM matches within an XStringSet

Description

Find all PWM matches within a set of sequences

Usage

getPwmMatches(
pwm,
stringset,
rc = TRUE,
min_score = "80%",
best_only = FALSE,
break_ties = c("all", "random", "first", "last", "central"),
mc.cores = 1,
...

)

Arguments

pwm A Position Weight Matrix, list of PWMs or universalmotif list

stringset An XStringSet

rc logical(1) Also find matches using the reverse complement of pwm

min_score The minimum score to return a match

best_only logical(1) Only return the best match

break_ties Method for breaking ties when only returning the best match Ignored when all
matches are returned (the default)

mc.cores Passed to mclapply if passing multiple PWMs

... Passed to matchPWM

10 hg19_mask

Details

Taking a set of sequences as an XStringSet, find all matches above the supplied score (i.e. threshold)
for a single Position Weight Matrix (PWM), generally representing a transcription factor binding
motif. By default, matches are performed using the PWM as provided and the reverse complement,
however this can easily be disabled by setting rc = FALSE.

The function relies heavily on matchPWM and Views for speed.

When choosing to return the best match (best_only = TRUE), only the match with the highest score
is returned for each sequence. Should there be tied scores, the best match can be chosen as either
the first, last, most central, all tied matches, or choosing one at random (the default).

Value

A DataFrame with columns: seq, score, direction, start, end, from_centre, seq_width, and
match

The first three columns describe the sequence with matches, the score of the match and whether the
match was found using the forward or reverse PWM. The columns start, end and width describe
the where the match was found in the sequence, whilst from_centre defines the distance between
the centre of the match and the centre of the sequence being queried. The final column contains the
matching fragment of the sequence as an XStringSet.

When passing a list of PWMs, a list of the above DataFrames will be returned.

Examples

Load the example PWM
data("ex_pfm")
esr1 <- ex_pfm$ESR1

Load the example Peaks
data("ar_er_seq")

Return all matches
getPwmMatches(esr1, ar_er_seq)

Just the best match
getPwmMatches(esr1, ar_er_seq, best_only = TRUE)

Apply multiple PWMs as a list
getPwmMatches(ex_pfm, ar_er_seq, best_only = TRUE)

hg19_mask Regions from hg19 with high N content

Description

A GRanges object with regions annotated as telomeres or centromeres

Usage

data("hg19_mask")

makeRMRanges 11

Format

An object of class GRanges of length 345.

Details

The regions defined as centromeres or telomeres in hg19, taken from AnnotationHub objects "AH107360"
and "AH107361". These were combined with regions containing Ns from the UCSC 2bit file, and
regions with Ns in the BSgenome.Hsapiens.UCSC.hg19 were retained.

Generation of these ranges is documented in system.file("scripts/hg19_mask.R", package =
"motifTestR")

Source

The package AnnotationHub and https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/
hg19.fa.masked.gz

Examples

data("hg19_mask")
hg19_mask

makeRMRanges Form a set of random, matching ranges for bootstrapping or permut-
ing

Description

Form a set of ranges from y which (near) exactly match those in x for use as a background set
requiring matching

Usage

makeRMRanges(x, y, ...)

S4 method for signature 'GRanges,GRanges'
makeRMRanges(
x,
y,
exclude = GRanges(),
n_iter = 1,
n_total = NULL,
replace = TRUE,
...,
force_ol = TRUE

)

S4 method for signature 'GRangesList,GRangesList'
makeRMRanges(
x,
y,
exclude = GRanges(),

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.fa.masked.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.fa.masked.gz

12 makeRMRanges

n_iter = 1,
n_total = NULL,
replace = TRUE,
mc.cores = 1,
...,
force_ol = TRUE,
unlist = TRUE

)

Arguments

x GRanges/GRangesList with ranges to be matched

y GRanges/GRangesList with ranges to select random matching ranges from

... Not used

exclude GRanges of ranges to omit from testing

n_iter The number of times to repeat the random selection process

n_total Setting this value will over-ride anything set using n_iter. Can be vector of any
length, corresponding to the length of x, when x is a GRangesList

replace logical(1) Sample with our without replacement when creating the set of random
ranges.

force_ol logical(1) Enforce an overlap between every site in x and y

mc.cores Passsed to mclapply

unlist logical(1) Return as a sorted GRanges object, or leave as a GRangesList

Details

This function uses the width distribution of the ’test’ ranges (i.e. x) to randomly sample a set of
ranges with matching width from the ranges provided in y. The width distribution will clearly be
exact when a set of fixed-width ranges is passed to x, whilst random sampling may yield some
variability when matching ranges of variable width.

When both x and y are GRanges objects, they are implicitly assumed to both represent similar
ranges, such as those overlapping a promoter or enhancer. When passing two GRangesList objects,
both objects are expected to contain ranges annotated as belonging to key features, such that the list
elements in y must encompass all elements in x. For example if x contains two elements named
’promoter’ and ’intron’, y should also contain elements named ’promoter’ and ’intron’ and these
will be sampled as matching ranges for the same element in x. If elements of x and y are not named,
they are assumed to be in matching order.

The default behaviour is to assume that randomly-generated ranges are for iteration, and as such,
ranges are randomly formed in multiples of the number of ’test’ ranges provided in x. The column
iteration will be added to the returned ranges. Placing any number into the n_total argument
will instead select a total number of ranges as specified here. In this case, no iteration column
will be included in the returned ranges.

Sampling is assumed to be with replacement as this is most suitable for bootstrapping and related
procedures, although this can be disabled by setting replace = FALSE

Value

A GRanges or GRangesList object

plotMatchPos 13

Examples

Load the example peaks
data("ar_er_peaks")
sq <- seqinfo(ar_er_peaks)
Now sample size-matched ranges for two iterations from chr1
makeRMRanges(ar_er_peaks, GRanges(sq)[1], n_iter = 2)

Or simply sample 100 ranges if not planning any iterative analyses
makeRMRanges(ar_er_peaks, GRanges(sq)[1], n_total = 100)

plotMatchPos Plot Motif Match Positions

Description

Plot the distribution of motif matches across sequences

Usage

plotMatchPos(
matches,
binwidth = 10,
abs = FALSE,
use_totals = FALSE,
type = c("density", "cdf", "heatmap"),
geom = c("smooth", "line", "point", "col"),
cluster = FALSE,
w = 0.1,
heat_fill = NULL,
...

)

Arguments

matches Output from getPwmMatches

binwidth Width of bins to use when plotting

abs logical(1) Plot absolute distances from centre

use_totals logical(1). If TRUE, plots will use total counts. The default (FALSE) plots
probabilities.

type Plot match density, the CDF or a binned heatmap

geom Type of geom to be used for line plots. Ignored for heatmaps

cluster logical(1) Cluster motifs when drawing a heatmap. If TRUE a dendrogram will
be added to the LHS of the plot

w Relative width of the dendrogram on (0, 1)

heat_fill scale_fill_continuous object for heatmaps. If not provided, scale_fill_viridis_c()
will be added to the heatmap.

... Passed to individual geom* functions

14 testClusterEnrich

Details

Multiple options are provided for showing the distribution of PWM matches within a set of se-
quences, using either the smoothed probability density, the probability CDF or as a heatmap. Dis-
tances can be shown as symmetrical around the centre or using absolute distances from the central
position within the sequences.

Heatmaps are only enabled for comparisons across multiple PWMs, with optional clustering en-
abled. If adding a dendrogram for clustering, the returned plot object will be a patchwork object.

Value

A ggplot2 object

Examples

Load the example PWM
data("ex_pfm")
esr1 <- ex_pfm$ESR1

Load the example sequences from the peaks
data("ar_er_seq")

Just the best match
bm <- getPwmMatches(esr1, ar_er_seq, best_only = TRUE)
plotMatchPos(bm, se = FALSE)

Matches can also be shown by distance from centre
plotMatchPos(bm, abs = TRUE)

Cumulative Probability plots are also implemented
plotMatchPos(bm, type = "cdf", geom = "line", colour = "red") +

geom_abline(intercept = 0.5, slope = 1/ 400)

testClusterEnrich Test enrichment across a cluster of motifs using a background set of
sequences

Description

Test for enrichment of any motif within a cluster across a set of sequences using a background set
to derive a NULL hypothesis

Usage

testClusterEnrich(
cl,
stringset,
bg,
var = "iteration",
model = c("quasipoisson", "hypergeometric", "poisson", "iteration"),
sort_by = c("p", "none"),
mc.cores = 1,

testClusterEnrich 15

...
)

Arguments

cl A list of Position Weight Matrices, universalmotifs, with each element repre-
senting clusters of related matrices

stringset An XStringSet with equal sequence widths

bg An XStringSet with the same sequence widths as the test XStringset

var A column in the mcols element of bg, usually denoting an iteration number

model The model used for analysis

sort_by Column to sort results by

mc.cores Passed to mclapply

... Passed to getPwmMatches or countPwmMatches

Details

This extends the analytic methods offered by testMotifEnrich using PWMs grouped into a set of
clusters. As with all cluster-level approaches, hits from multiple PWMs which overlap are counted
as a single hit ensuring that duplicated matches are not double-counted, and that only individual
positions within the sequences are.

Value

See testMotifEnrich

See Also

makeRMRanges(), getClusterMatches(), countClusterMatches(), testMotifEnrich()

Examples

Load the example peaks & the sequences
data("ar_er_peaks")
data("ar_er_seq")
sq <- seqinfo(ar_er_peaks)
Now sample size-matched ranges 10 times larger. In real-world analyses,
this set should be sampled as at least 1000x larger, ensuring features
are matched to your requirements. This example masks regions with known N
content, including centromeres & telomeres
data("hg19_mask")
set.seed(305)
bg_ranges <- makeRMRanges(

ar_er_peaks, GRanges(sq)[1], exclude = hg19_mask, n_iter = 10
)

Convert ranges to DNAStringSets
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19
bg_seq <- getSeq(genome, bg_ranges)

Test for enrichment of clustered motifs
data("ex_pfm")

16 testClusterPos

cl <- list(A = ex_pfm[1], B = ex_pfm[2:3])
testClusterEnrich(cl, ar_er_seq, bg_seq, model = "poisson")

testClusterPos Test positional bias motifs within a cluster

Description

Test positional bias for all motifs within a given cluster

Usage

testClusterPos(
x,
stringset,
binwidth = 10,
abs = FALSE,
rc = TRUE,
min_score = "80%",
break_ties = "all",
alt = c("greater", "less", "two.sided"),
sort_by = c("p", "none"),
mc.cores = 1,
...

)

Arguments

x A Position Weight Matrix, universalmotif object or list thereof. Alternatively
can be a single DataFrame or list of DataFrames as returned by getCluster-
Matches with best_only = TRUE

stringset An XStringSet. Not required if matches are supplied as x

binwidth Width of bins across the range to group data into

abs Use absolute positions around zero to find symmetrical enrichment

rc logical(1) Also find matches using the reverse complement of each PWM

min_score The minimum score to return a match

break_ties Choose how to resolve matches with tied scores

alt Alternative hypothesis for the binomial test

sort_by Column to sort results by

mc.cores Passed to mclapply

... Passed to matchPWM

testMotifEnrich 17

Details

This is a reimplementation of testMotifPos for sets of motifs which have been clustered for similar-
ity. The positions test the bias of any motifs within the cluster given that overlapping matches are
only counted once, and with the match retained being the one with the highest relative score.

It should also be noted that some motif clusters will contain PWMs of varying length. When finding
positional bias, the widest motif is taken as the width for all, and any matches from narrower motifs
outside of the range allowed by wider motifs are discarded. This reduction in signal will make a
small difference in the outer bins, but is not considered to be problematic for the larger analysis.

Value

A data.frame with columns start, end, centre, width, total_matches, matches_in_region,
expected, enrichment, prop_total, p and consensus_motif The total matches represent the
total number of matches within the set of sequences, whilst the number observed in the final region
are also given, along with the proportion of the total this represents. Enrichment is simply the ratio
of observed to expected based on the expectation of the null hypothesis

The consensus motif across all matches is returned as a Position Frequency Matrix (PFM) using
consensusMatrix.

Examples

Load the example PWM
data("ex_pfm")
Load the example sequences
data("ar_er_seq")

Cluster the motifs
cl <- list(A = ex_pfm[1], B = ex_pfm[2:3])

Get the best match and use this data
matches <- getClusterMatches(cl, ar_er_seq, best_only = TRUE)
Test for enrichment in any position
testClusterPos(matches)

Or just pass the clustered matrices
Here we've set abs = TRUE to test absolute distance from the centre
testClusterPos(cl, ar_er_seq, abs = TRUE, binwidth = 10)

testMotifEnrich Test motif enrichment using a background set of sequences

Description

Test for motif enrichment within a set of sequences using a background set to derive a NULL
hypothesis

18 testMotifEnrich

Usage

testMotifEnrich(
pwm,
stringset,
bg,
var = "iteration",
model = c("quasipoisson", "hypergeometric", "poisson", "iteration"),
sort_by = c("p", "none"),
mc.cores = 1,
...

)

Arguments

pwm A Position Weight Matrix or list of PWMs

stringset An XStringSet with equal sequence widths

bg An XStringSet with the same sequence widths as the test XStringset

var A column in the mcols element of bg, usually denoting an iteration number

model The model used for analysis

sort_by Column to sort results by

mc.cores Passed to mclapply

... Passed to getPwmMatches or countPwmMatches

Details

This function offers four alternative models for assessing the enrichment of a motif within a set
of sequences, in comparison to a background set of sequences. Selection of the BG sequences
plays an important role and, in conjunction with the question being addressed, determines the most
appropriate model to use for testing, as described below.

It should also be noted that the larger the BG set of sequences, the larger the computational burden,
and results can take far longer to return. For many millions of background sequences, this may run
beyond an hour

Descriptions of Models and Use Cases:
Hypergeometric Tests:
Hypergeometric tests are best suited to the use case where the test set of sequences represents
a subset of a larger set, with a specific feature or behaviour, whilst the BG set may be the
remainder of the set without that feature. For example, the test set may represent ChIP-Seq
binding sites where signal changes in response to treatment, whilst the BG set represents the
sites where no changed signal was observed. Testing is one-sided, for enrichment of motifs
within the test set.
Due to these relatively smaller sized datasets, setting model = "hypergeometric", will generally
return results quickly

Poisson Tests:
This approach requires a set of background sequences which should be much larger than the test
set of sequences. The parameters for a Poisson model are estimated in a per-sequence manner
on the set of BG sequences, and the observed rate of motif-matches within the test set is then
tested using poisson.test.
This approach assumes that all matches follow a Poisson distribution, which is often true, but
data can also be over-dispersed. Given that this model can also return results relatively quickly,

testMotifEnrich 19

is it primarily suitable for data exploration, such as quickly checking for expected behaviours,
but not for final results.

Quasi-Poisson Test:
The quasipoisson model allows for over-dispersion and will return more conservative results
than using the standard Poisson model. Under the method currently implemented here, BG
sequences should be divided into blocks (i.e. iterations), identical in size to the test set of se-
quences. Model parameters are estimated per iteration across the BG set of sequences, with the
rate of matches in the test set being compared against these blocks. This ensures more conser-
vative results that if analysing test and bg sequences as collections of individual sequences.
It is expected that the BG set will matched for the features of interest and chosen using mak-
eRMRanges with a large number of iterations, e.g. n_iter = 1000. Due to this parameterisation,
quasipoisson approaches can be computationally time-consuming, as this is effectively an itera-
tive approach.

Iteration:
Setting the model as "iteration" performs a non-parametric analysis, with the exception of re-
turning Z-scores under the Central Limit Theorem. Mean and SD of matches is found for each
iteration, and used to return Z scores, with p-values returned from both a Z-test and from com-
paring observed values directly to sampled values obtained from the BG sequences. Sampled
values are calculated directly and as such, are limited in precision.
As for the QuasiPoisson model, a very large number of iterations is expected to be used, to
ensure the CLT holds, again making this a computationally demanding test. Each iteration/block
is expected to be identically-sized to the test set, and matched for any features as appropriate
using makeRMRanges().

Value

A data.frame with columns: sequences, matches, expected, enrichment, and p, with addi-
tional columns Z, est_bg_rate (Poisson), odds_ratio (Hypergeometric) or Z, sd_bg, n_iter and
iter_p (Iterations). The numbers of sequences and matches refer to the test set of sequences, whilst
expected is the expected number of matches under the Poisson or iterative null distribution. The
ratio of matches to expected is given as enrichment, along with the Z score and p-value. Whilst the
Z score is only representative under the Poisson model, it is used to directly estimate p-values under
the iterative approach. Under this latter approach, the sd of the matches found in the background
sequences is also given, along with the number of iterations and the p-values from permutations
testing the one-sided hypothesis hypothesis for enrichment.

It may also be worth noting that if producing background sequences using makeRMRanges with
replace = TRUE and force_ol = TRUE, the iterative model corresponds to a bootstrap, given that
the test sequences will overlap the background sequences and background ranges are able to be
sampled with replacement.

See Also

makeRMRanges(), getPwmMatches(), countPwmMatches()

Examples

Load the example peaks & the sequences
data("ar_er_peaks")
data("ar_er_seq")
sq <- seqinfo(ar_er_peaks)
Now sample size-matched ranges 10 times larger. In real-world analyses,
this set should be sampled as at least 1000x larger, ensuring features
are matched to your requirements. This example masks regions with known N

20 testMotifPos

content, including centromeres & telomeres
data("hg19_mask")
set.seed(305)
bg_ranges <- makeRMRanges(

ar_er_peaks, GRanges(sq)[1], exclude = hg19_mask, n_iter = 10
)

Convert ranges to DNAStringSets
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19
bg_seq <- getSeq(genome, bg_ranges)

Test for enrichment of the ESR1 motif
data("ex_pfm")
esr1 <- ex_pfm$ESR1
testMotifEnrich(esr1, ar_er_seq, bg_seq, model = "poisson")

Test all motifs
testMotifEnrich(ex_pfm, ar_er_seq, bg_seq, model = "poisson")

testMotifPos Test for a Uniform Distribution across a set of best matches

Description

Test for a Uniform Distribution across a set of best matches

Usage

testMotifPos(
x,
stringset,
binwidth = 10,
abs = FALSE,
rc = TRUE,
min_score = "80%",
break_ties = "all",
alt = c("greater", "less", "two.sided"),
sort_by = c("p", "none"),
mc.cores = 1,
...

)

Arguments

x A Position Weight Matrix, universalmotif object or list thereof. Alternatively
can be a single DataFrame or list of DataFrames as returned by getPwmMatches
with best_only = TRUE

stringset An XStringSet. Not required if matches are supplied as x

binwidth Width of bins across the range to group data into

testMotifPos 21

abs Use absolute positions around zero to find symmetrical enrichment

rc logical(1) Also find matches using the reverse complement of each PWM

min_score The minimum score to return a match

break_ties Choose how to resolve matches with tied scores

alt Alternative hypothesis for the binomial test

sort_by Column to sort results by

mc.cores Passed to mclapply

... Passed to matchPWM

Details

This function tests for an even positional spread of motif matches across a set of sequences, using
the assumption (i.e. H~0~) that if there is no positional bias, matches will be evenly distributed
across all positions within a set of sequences. Conversely, if there is positional bias, typically but
not necessarily near the centre of a range, this function intends to detect this signal, as a rejection
of the null hypothesis.

Input can be provided as the output from getPwmMatches setting best_only = TRUE if these matches
have already been identified. If choosing to provide this object to the argument matches, nothing is
required for the arguments pwm, stringset, rc, min_score or break_ties Otherwise, a Position
Weight Matrix (PWM) and an XStringSet are required, along with the relevant arguments, with
best matches identified within the function.

The set of best matches are then grouped into bins along the range, with the central bin containing
zero, and tallied. Setting abs to TRUE will set all positions from the centre as absolute values,
returning counts purely as bins with distances from zero, marking this as an inclusive lower bound.
Motif alignments are assigned into bins based on the central position of the match, as provided in
the column from_centre when calling getPwmMatches.

The binom.test is performed on each bin using the alternative hypothesis, with the returned p-values
across all bins combined using the Harmonic Mean p-value (HMP) (See p.hmp). All bins with raw
p-values below the HMP are identified and the returned values for start, end, centre, width, matches
in region, expected and enrichment are across this set of bins. The expectation is that where a
positional bias is evident, this will be a narrow range containing a non-trivial proportion of the total
matches.

It should also be noted that binom.test() can return p-values of zero, as beyond machine precision.
In these instances, zero p-values are excluded from calculation of the HMP. This will give a very
slight conservative bias, and assumes that for these extreme cases, neighbouring bins are highly
likely to also return extremely low p-values and no significance will be lost.

Value

A data.frame with columns start, end, centre, width, total_matches, matches_in_region,
expected, enrichment, prop_total, p and consensus_motif The total matches represent the
total number of matches within the set of sequences, whilst the number observed in the final region
are also given, along with the proportion of the total this represents. Enrichment is simply the ratio
of observed to expected based on the expectation of the null hypothesis

The consensus motif across all matches is returned as a Position Frequency Matrix (PFM) using
consensusMatrix.

22 zr75_enh

Examples

Load the example PWM
data("ex_pfm")
esr1 <- ex_pfm$ESR1

Load the example sequences
data("ar_er_seq")

Get the best match and use this data
matches <- getPwmMatches(esr1, ar_er_seq, best_only = TRUE)
Test for enrichment in any position
testMotifPos(matches)

Provide a list of PWMs, testing for distance from zero
testMotifPos(ex_pfm, ar_er_seq, abs = TRUE, binwidth = 10)

zr75_enh Candidate Enhancer Regions from ZR-75-1 Cells

Description

The chr1 subset of candidate enhancers for ZR-75-1 cells

Usage

data("zr75_enh")

Format

An object of class GRanges of length 5237.

Details

These enhancers are the chr1 subset of enhancer regions for ZR-75-1 cells as identified by En-
hancerAtlas 2.0

#’ Generation of these ranges is documented in system.file("scripts/zr75_enh.R", package
= "motifTestR")

Source

http://www.enhanceratlas.org/index.php

Examples

data("zr75_enh")
zr75_enh

http://www.enhanceratlas.org/index.php

Index

∗ datasets
ar_er_peaks, 3
ar_er_seq, 4
ex_pfm, 7
hg19_mask, 10
zr75_enh, 22

∗ internal
motifTestR-package, 2

abline, 5
ar_er_peaks, 3
ar_er_seq, 4

binom.test, 21

clusterMotifs, 4
compare_motifs, 5
consensusMatrix, 17, 21
countClusterMatches

(getClusterMatches), 7
countClusterMatches(), 2, 15
countPWM, 6
countPwmMatches, 6, 15, 18
countPwmMatches(), 2, 19

ex_pfm, 7

getClusterMatches, 7, 16
getClusterMatches(), 3, 15
getPwmMatches, 8, 9, 13, 15, 18, 20, 21
getPwmMatches(), 2, 19

hclust, 5
hg19_mask, 10

makeRMRanges, 11, 19
makeRMRanges(), 3, 15, 19
makeRMRanges,GRanges,GRanges-method

(makeRMRanges), 11
makeRMRanges,GRangesList,GRangesList-method

(makeRMRanges), 11
matchPWM, 8–10, 16, 21
mclapply, 6, 8, 9, 12, 15, 16, 18, 21
motifTestR (motifTestR-package), 2
motifTestR-package, 2

p.hmp, 21
plot.hclust, 5
plotMatchPos, 13
plotMatchPos(), 3
poisson.test, 18

testClusterEnrich, 14
testClusterEnrich(), 2
testClusterPos, 16
testClusterPos(), 2
testMotifEnrich, 15, 17
testMotifEnrich(), 2, 15
testMotifPos, 17, 20
testMotifPos(), 2

view_motifs, 5
Views, 8, 10

zr75_enh, 22

23

	motifTestR-package
	ar_er_peaks
	ar_er_seq
	clusterMotifs
	countPwmMatches
	ex_pfm
	getClusterMatches
	getPwmMatches
	hg19_mask
	makeRMRanges
	plotMatchPos
	testClusterEnrich
	testClusterPos
	testMotifEnrich
	testMotifPos
	zr75_enh
	Index

