
Package ‘epigenomix’
November 26, 2024

Type Package

Title Epigenetic and gene transcription data normalization and
integration with mixture models

Version 1.46.0

Date 2021-11-18

Author Hans-Ulrich Klein, Martin Schaefer

Maintainer Hans-Ulrich Klein <h.klein@uni-muenster.de>

Depends R (>= 3.2.0), methods, Biobase, S4Vectors, IRanges,
GenomicRanges, SummarizedExperiment

Imports BiocGenerics, MCMCpack, Rsamtools, parallel, GenomeInfoDb,
beadarray

Description A package for the integrative analysis of RNA-seq or
microarray based gene transcription and histone modification
data obtained by ChIP-seq. The package provides methods for
data preprocessing and matching as well as methods for fitting
bayesian mixture models in order to detect genes with
differences in both data types.

License LGPL-3

biocViews ChIPSeq, GeneExpression, DifferentialExpression,
Classification

git_url https://git.bioconductor.org/packages/epigenomix

git_branch RELEASE_3_20

git_last_commit 4579662

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-11-25

Contents
bayesMixModel . 2
calculateCrossCorrelation . 5
ChIPseqSet-class . 7
eSet . 9
fpkm . 9

1

2 bayesMixModel

getAlignmentQuality . 10
integrateData . 11
mappedReads . 12
matchProbeToPromoter . 13
MixModel-class . 14
MixModelBayes-class . 16
MixModelML-class . 17
MixtureComponent-class . 18
mlMixModel . 19
normalize . 20
normalizeChIP . 22
plotChains . 23
plotClassification . 24
plotComponents . 25
summarizeReads . 26
transToTSS . 27

Index 29

bayesMixModel Fits a Bayesian mixture model using Markov Chain Monte Carlo
(MCMC) methods

Description

This method estimates the posterior distribution of a Bayesian mixture model using Markov Chain
Monte Carlo (MCMC) methods and calculates measures of this distribution. The mixture model
may consist of normal components (with a fixed expectation of 0), exponential components and
gamma components, which may be mirrored in order to model negative values.

Usage

bayesMixModel(z, normNull=c(), expNeg=c(), expPos=c(), gamNeg=c(), gamPos=c(), sdNormNullInit=c(), rateExpNegInit=c(), rateExpPosInit=c(), shapeGamNegInit=c(), scaleGamNegInit=c(), shapeGamPosInit=c(), scaleGamPosInit=c(), piInit, classificationsInit, dirichletParInit=1, shapeDir=1, scaleDir=1, weightsPrior="FDD", sdAlpha, shapeNorm0=c(), scaleNorm0=c(), shapeExpNeg0=c(), scaleExpNeg0=c(), shapeExpPos0=c(), scaleExpPos0=c(), shapeGamNegAlpha0=c(), shapeGamNegBeta0=c(), scaleGamNegAlpha0=c(), scaleGamNegBeta0=c(), shapeGamPosAlpha0=c(), shapeGamPosBeta0=c(), scaleGamPosAlpha0=c(), scaleGamPosBeta0=c(), itb, nmc, thin, average="mean",sdShape)

Arguments

z Observed values

normNull Indices of the normal components (that have µ = 0).

expNeg Indices of the mirrored exponential components.

expPos Indices of the exponential components.

gamNeg Indices of the mirrored gamma components.

gamPos Indices of the gamma components.

sdNormNullInit Initial standard deviations of the normal components.

rateExpNegInit Initial rates of the mirrored exponential components. Only relevant if mirrored
exponential components are specified.

rateExpPosInit Initial rates of the exponential components. Only relevant if exponential com-
ponents are specified.

shapeGamNegInit

Initial shape parameters of the mirrored gamma components. Only relevant if
mirrored Gamma components are specified.

bayesMixModel 3

scaleGamNegInit

Initial scale parameters of the mirrored gamma components. Only relevant if
mirrored Gamma components are specified.

shapeGamPosInit

Initial shape parameters of the gamma components. Only relevant if Gamma
components are specified.

scaleGamPosInit

Initial scale parameters of the gamma components. Only relevant if Gamma
components are specified.

piInit Initial weights of the components. If missing, all k components get the same
initial weight 1/k.

classificationsInit

Initial classifications of the data points. If missing, all data points are assigned
to class floor(k/2) with k = number of components.

dirichletParInit

Initial concentration parameter of prior distribution assigned to the mixture weights.

shapeDir Prior shape parameter of Gamma distribution for concentration parameter of
prior distribution assigned to the mixture weights.

scaleDir Prior scale parameter of Gamma distribution for concentration parameter of
prior distribution assigned to the mixture weights.

weightsPrior Prior distribution assigned to mixture weights. Available are the Finite-dimensional
Dirichlet prior ("FDD"), also known as Dirichlet-multinomial process, and the
Truncated Dirichlet process ("TDP"). Both are approximations to the Dirichlet
process for a large number of components, while the Finite-dimensional Dirich-
let prior is also suited for a small number of components as a special case of the
Dirichlet distribution.

sdAlpha Standard deviation of proposal distribution for concentration parameter of the
prior distribution assigned to the mixture weights in the Metropolis-Hastings
step incorporated in the Gibbs sampler. Only relevant if weightsPrior="FDD".

shapeNorm0 Prior shape parameter of Gamma distribution for precision of normal compo-
nents.

scaleNorm0 Prior scale parameter of Gamma distribution for precision of normal compo-
nents.

shapeExpNeg0 Prior shape parameter of Gamma distribution for parameter of mirrored expo-
nential components. Only relevant if mirrored exponential components are spec-
ified.

scaleExpNeg0 Prior scale parameter of Gamma distribution for parameter of mirrored exponen-
tial components. Only relevant if mirrored exponential components are speci-
fied.

shapeExpPos0 Prior shape parameter of Gamma distribution for parameter of exponential com-
ponents. Only relevant if exponential components are specified.

scaleExpPos0 Prior scale parameter of Gamma distribution for parameter of exponential com-
ponents. Only relevant if exponential components are specified.

shapeGamNegAlpha0

Prior shape parameter of Gamma distribution for shape parameter of mirrored
Gamma components. Only relevant if mirrored Gamma components are speci-
fied.

4 bayesMixModel

shapeGamNegBeta0

Prior scale parameter of Gamma distribution for shape parameter of mirrored
Gamma components. Only relevant if mirrored Gamma components are speci-
fied.

scaleGamNegAlpha0

Prior shape parameter of Gamma distribution for scale parameter of mirrored
Gamma components. Only relevant if mirrored Gamma components are speci-
fied.

scaleGamNegBeta0

Prior scale parameter of Gamma distribution for scale parameter of mirrored
Gamma components. Only relevant if mirrored Gamma components are speci-
fied.

shapeGamPosAlpha0

Prior shape parameter of Gamma distribution for shape parameter of Gamma
components. Only relevant if Gamma components are specified.

shapeGamPosBeta0

Prior scale parameter of Gamma distribution for shape parameter of Gamma
components. Only relevant if Gamma components are specified.

scaleGamPosAlpha0

Prior shape parameter of Gamma distribution for scale parameter of Gamma
components. Only relevant if Gamma components are specified.

scaleGamPosBeta0

Prior scale parameter of Gamma distribution for scale parameter of Gamma
components. Only relevant if Gamma components are specified.

itb Number of iterations used for burn-in.

nmc Number of iterations after burn-in used for analysis.

thin Thinning value for the iterations after burn-in.

average Way of averaging across the posterior distribution to obtain estimates of model
parameters. Either average="mean" or average="median". Note: For the al-
location to components, results are given for posterior mean, median and maxi-
mum density regardless of the specification.

sdShape Standard deviation of proposal distribution for shape parameter of Gamma com-
ponents in the Metropolis-Hastings step incorporated in the Gibbs sampler. Only
relevant if Gamma components are specified.

Details

The convergence of Markov chains must be assessed prior to an interpretation of results. Inspection
of trace plots via plotChains is therefore urgently recommended. Iterations during which one of
the chains has not yet reached stationarity should not be taken into account for analysis and can be
excluded by setting an appropriate burn-in value itb. Autocorrelation between subsequent chain
values can be reduced by thinning the chain, setting an appropriate value for thin. To ensure
a sufficient number of iterations for the chains after the burn-in, nmc should be increased when
the thinning is increased. The standard deviations of the proposal distribution in a Metropolis-
Hastings step should be tuned to achieve a medium-level acceptance rate (e.g., 0.3-0.7): A very low
acceptance rate would cause a long running time of the algorithm, while a very high acceptance rate
typically leads to autocorrelation between the values of the chain. Acceptance is documented for
each iteration in the chains slot of objects of class MixModelBayes-class.

calculateCrossCorrelation 5

Value

An object of class MixModelBayes-class storing results, data, priors, initial values and information
about convergence.

Author(s)

Martin Schaefer (martin.schaefer@udo.edu)

See Also

plotChains, MixModelBayes-class

Examples

set.seed(1000)
z <- c(rnorm(1000, 0, 0.5), rnorm(1000, 0, 1))
mm <- bayesMixModel(z, normNull=1:2, sdNormNullInit=c(0.1, 0.2),

piInit=c(1/2, 1/2), shapeNorm0=c(1, 1), scaleNorm0=c(1, 1),
shapeExpNeg0=c(), scaleExpNeg0=c(),
shapeExpPos0=c(), scaleExpPos0=c(), sdAlpha=1, itb=100, nmc=1000, thin=10)

mm
plotComponents(mm)
plotChains(mm, chain="pi")

z <- c(rnorm(200, 0, 1), rnorm(200, 0, 5), rexp(200, 0.1), -rexp(200, 0.1))
mm <- bayesMixModel(z, normNull=1:2, gamNeg=3, gamPos=4,

sdNormNullInit=c(1, 1),
shapeGamNegInit=1, scaleGamNegInit=1, shapeGamPosInit=1, scaleGamPosInit=1,
shapeNorm0=c(1,3), scaleNorm0=c(1,3), sdAlpha=1,
shapeGamNegAlpha0=1, shapeGamNegBeta0=1,
scaleGamNegAlpha0=1, scaleGamNegBeta0=1,
shapeGamPosAlpha0=1, shapeGamPosBeta0=1,
scaleGamPosAlpha0=1, scaleGamPosBeta0=1, sdShape=0.025,
itb=100, nmc=1000, thin=10)

mm
plotComponents(mm)
plotChains(mm, chain="pi")

calculateCrossCorrelation

Calculate the cross correlation for a given GRanges object.

Description

This method calculates the cross correlation, i.e. the Pearson correlation between the coverages of
the positive and negative strand from a DNA sequencing experiment. The cross correlation can be
used as a quality measure in ChIP-seq experiments (Kharchenko et al. 2008). Cross correlation
can also be used to estimate the fragment size by determining the shift (given in base pairs) that
maximizes the cross correlation.

Usage

calculateCrossCorrelation(object, shift=c(200,250,300), bin=10, mode="none", minReads=10000, chrs=NA, mc.cores=1)

6 calculateCrossCorrelation

Arguments

object An GRanges object containing the aligned reads.

shift The number of bases that the negative strand is shifted towards its three prime
end. This can be a vector, if the correlation should be calculated for different
shifts.

bin If bin is larger than one, the coverage is calculated for bins of size bin and not
for each single base. This speeds up calculations and might be beneficial in
cases of low coverage. Note that shifting is performed after binning, so that the
shift(s) should be a multiple of bin (otherwise, shift is rounded to the nearest
multiple of bin).

mode mode defines how bases (or bins) without reads are handled. both means that
only bases covered on both strands are included when calculating the correla-
tion. one means that the base has to be covered on at least one strand and none
mean that all bases are included independent of their coverage.

minReads If not at least minReads are mapped to a chromosome, the chromosome is omit-
ted.

chrs A character vector with the chromosomes that should be included into the
calculation. NA means all chromosomes.

mc.cores Number of cores to be used.

Details

Only 5 prime start positions of reads are used for calculating the coverage. Therefore, after remov-
ing duplicates in a single end sequencing experiment, the coverage can not be larger than one, if
the bin size is set to one. (In this setting, mode both is meaningless.) If bin is larger than one,
the coverage within a bin is aggregated. Then, the correlation is calculated for each shift. A shift
(given in basepairs) should be multiple of the bin size (given in basepairs, too). If not, the binnend
coverage is shifted by round(shift/bin) elements.

The different modes define whether regions without coverage or with only one covered strand
should used. The original implementation in the package "spp" does not make use of regions
without coverage. However, this seems to be a loss of information, since no coverage has also a
biological meaning in a ChIP-seq experiment. If the fragment size is approximately 500bp, setting
shift=seq(200, 800, 10), bin=10 and mode="none" should be a good setting.

After the cross correlation was calculated for each chromosome, the weighted mean correlation
across all chromosomes is calculated. The weight for a specific chromosome equals the fraction of
all reads that were aligned to that chromosome.

Value

A numeric vector with the cross correlation for each shift. The names of the vector correspond to
the shifts.

Author(s)

Hans-Ulrich Klein (hklein@broadinstitute.org)

References

Kharchenko PV, Tolstorukov MY and Park PJ. Design and analysis of ChIP-seq experiments for
DNA-binding proteins. Nat Biotechnol 2008, 26(12):1351-9

ChIPseqSet-class 7

Landt SG et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
Genome Res. 2012, 22(9):1813-31

See Also

GRanges-class

Examples

triangularKernel <- function(x, pos, h) {
res <- 1 - (abs(x - pos) / h)
res[res < 0] <- 0
return(res)

}
covPos <- round(triangularKernel(1:100, 60, 50) * 100)
covNeg <- round(triangularKernel(1:100, 65, 50) * 100)

reads <- GRanges(IRanges(start=c(rep(seq_along(covPos), covPos), rep(seq_along(covNeg), covNeg) - 9),
width=10),
strand=c(rep("+", sum(covPos)), rep("-", sum(covNeg))),
seqnames=rep("1", sum(covPos)+sum(covNeg)))

calculateCrossCorrelation(reads, shift=c(0,10), bin=1, mode="none", minReads=1)
cor(covPos, covNeg)
cor(covPos[1:(length(covPos)-10)], covNeg[11:length(covNeg)])

calculateCrossCorrelation(reads, shift=c(0,10), bin=1, mode="one", minReads=1)
cor(covPos[covPos != 0 | covNeg != 0], covNeg[covPos != 0 | covNeg != 0])

calculateCrossCorrelation(reads, shift=c(0,10), bin=1, mode="both", minReads=1)
cor(covPos[covPos != 0 & covNeg != 0], covNeg[covPos != 0 & covNeg != 0])

covPos2 <- round(triangularKernel(1:100, 60, 50) * 50)
covNeg2 <- round(triangularKernel(1:100, 68, 50) * 50)
reads2 <- GRanges(IRanges(start=c(rep(seq_along(covPos2), covPos2), rep(seq_along(covNeg2), covNeg2) - 9),

width=10),
strand=c(rep("+", sum(covPos2)), rep("-", sum(covNeg2))),
seqnames=rep("2", sum(covPos2)+sum(covNeg2)))

seqlevels(reads2) <- c("1", "2")
allReads <- c(reads, reads2)

calculateCrossCorrelation(allReads, shift=5, minReads=1, bin=1, mode="none")
cor1 <- cor(covPos[1:(length(covPos)-5)], covNeg[6:length(covNeg)])
cor2 <- cor(covPos2[1:(length(covPos2)-5)], covNeg2[6:length(covNeg2)])
cor1 * (sum(c(covPos, covNeg))/length(allReads)) +

cor2 * (sum(c(covPos2, covNeg2))/length(allReads))

ChIPseqSet-class Class "ChIPseqSet"

Description

A class for storing count data obtained from ChIP-seq experiments by counting the number of reads
lying within regions. The class extends RangedSummarizedExperiment.

8 ChIPseqSet-class

Objects from the Class

Objects can be created by calls of the form ChIPseqSet(chipVals=countDataMatrix, rowRanges=genomicRegions,
colData=DataFrame(row.names=colnames(countDataMatrix)), ...). However, one will most
likely create a ChIPseqSet object by calling summarizeReads.

Slots

metadata: An optional list of arbitrary content describing the overall experiment.

rowRanges: Object of class "GRanges" or "GRangesList" containing the genomic regions where
the reads were counted.

colData: Object of class "DataFrame" containing information on variable values of the samples.
Some methods require the total library size of each sample stored in a column titled total-
Counts.

assays: Object of class SimpleList of a matrix, named chipVals containing the read counts per
genomic region.

Extends

Class "RangedSummarizedExperiment", directly.

Methods

chipVals signature(object = "ChIPseqSet"): Returns the matrix with read counts.

chipVals<- signature(object = "ChIPseqSet", value = "matrix"): Sets the matrix with read
counts.

cpm signature(object = "ChIPseqSet", libSize,log2=FALSE, priorCount=0.1): Returns an
object of ChIPseqSet with read counts standardized by library size - counts per million (cpm).
If the library size is not given, the column sums of the given object are used. Cpm values are
logarithmized after adding priorCounts, if log2 is TRUE.

Author(s)

Hans-Ulrich Klein (hklein@broadinstitute.org)

See Also

summarizeReads, normalizeChIP

Examples

showClass("ChIPseqSet")

eSet 9

eSet Example gene expression data set.

Description

The ExpressionSet stores 2 replicates for each of two different conditions. Data were obtained
from Affymetrix MouseGene 1.0 ST arrays.

Usage

data(eSet)

Format

An object of class ExpressionSet.

Details

The example data contains a subset of 200 probesets located on chromosome 1. Data were RMA
normalized.

Examples

data(eSet)
eSet
pData(eSet)

fpkm Example RNA-seq data set.

Description

The data.frame stores transcription values obtained from the Cufflinks software for two samples
(CEBPA_WT and CEBPA_KO). Transcription values are given in fragments per kilobase of tran-
scripts per million fragments (FPKM).

Usage

data(fpkm)

Format

An object of class data.frame.

Details

All transcripts sharing the TSS were grouped and one transcription values is given for each group
of transcripts. The example data contains a subset of about 3500 TSS located on chromosome 1.

Examples

data(fpkm)
head(fpkm)

10 getAlignmentQuality

getAlignmentQuality Calculation of basic alignments statistics

Description

Calculates some basic alignment statistics for given bam files.

Usage

getAlignmentQuality(bamFile, verbose = FALSE, mc.cores = 1)

Arguments

bamFile A character vector with the filenames of the bam files

verbose If set to TRUE, some status information is written to the R console.

mc.cores Number of cores to be used.

Details

The given bam files should have marked duplicates and not uniquely mapped reads should have a
quality value of 0. In detail, this function returns a data frame with the following columns:

Sample File name without path and suffix

HeaderID ID field from bam header, if available

HeaderSampleID SM field from bam header, if available

HeaderLibraryID LB field from bam header, if available

TotalReads Total number of reads in bam file

MappedReads Number of mapped Reads

MappedReadsRel MappedReads/TotalReads

UniquelyMappedReads Number of mapped reads with mapping quality larger 0

UniquelyMappedReadsRel UniquelyMappedReads/MappedReads

UniquelyMappedUniqueReads Number of non duplicated mapped reads with mapping quality
larger 0

UniquelyMappedUniqueReadsRel UniquelyMappedUniqueReads/MappedReads

NonRedundantFraction UniquelyMappedUniqueReads/UniquelyMappedReads

QualMean Mean mapping quality of all uniquely mapped unique reads

QualSd Standard deviation of the mapping quality of all uniquely mapped unique reads

Quantile0 0% quantileof the mapping quality of all uniquely mapped unique reads

Quantile25 25% quantile of the mapping quality of all uniquely mapped unique reads

Quantile50 50% quantile of the mapping quality of all uniquely mapped unique reads

Quantile75 75% quantile of the mapping quality of all uniquely mapped unique reads

Quantile100 100% quantile of the mapping quality of all uniquely mapped unique reads

Path Full path and file name as given in argument bamFile

integrateData 11

Value

Returns a data frame with one row for each given bam file and the columns as listed in the details
section.

Author(s)

Hans-Ulrich Klein (hklein@broadinstitute.org)

Examples

Not run: getAlignmentQuality("myFile.bam")

integrateData Calculates a normalized correlation score from ChIP-seq and mi-
croarray gene expression data.

Description

This function calculates the product of the standardized differences between two conditions in ChIP-
seq data and the respective standardized differences in gene expression data. A score close to zero
means that there are no (large) differences in at least one of the two data sets. If the score is
positive, equally directed differences exist in both data sets. In case of a negative score, differences
have unequal signs in the two data sets.

Usage

integrateData(expr, chipseq, factor, reference)

Arguments

expr An ExpressionSet holding the gene expression data.
chipseq A ChIPseqSet holding the ChIP-seq data.
factor A character giving the name of the factor that describes the conditions to be

compared. The factor must be present in the pheno data slot of the objects expr
and chipseq. Further, the factor must have exactly two levels and the level names
must be the same in both objects.

reference Optionally, the name of the factor level that should be used as reference. If
missing, the first level of factor in the object expr is used.

Details

Let A and B denote the gene expression value of one probe in the group of interest and in the
reference group defined by the argument reference. And let X and Y be the ChIP-seq values
assigned to that probe. This functions returnes for each probe

Z = (A−B)/σge × (X − Y)/σchip,

where σge is the standard deviation estimated from all observed difference in the gene expression
data and σchip the standard deviation in the ChIP-seq data.

If there is more than one sample in any group and data set, the average of the replicates is calcuated
first and than plugged into the formula above.

Not all features in expr must also be in chipseq and vice versa. Features present in only one of the
two data types are omitted.

12 mappedReads

Value

A matrix with five columns. The first 4 columns store the (average) expression values and the
(average) ChIP-seq values for each of the two conditions. The fith columns store the correlation
score. The row names equal common feature names of expr and chipseq.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

summarizeReads normalizeChIP

Examples

ge <- matrix(c(5,12,5,11,11,10,12,11), nrow=2)
row.names(ge) <- c("100_at", "200_at")
colnames(ge) <- c("c1", "c2", "t1", "t2")
geDf <- data.frame(status=factor(c("control", "control", "treated", "treated")),

row.names=colnames(ge))
eSet <- ExpressionSet(ge, phenoData=AnnotatedDataFrame(geDf))

chip <- matrix(c(10,20,20,22), nrow=2)
row.names(chip) <- c("100_at", "200_at")
colnames(chip) <- c("c", "t")
rowRanges <- GRanges(IRanges(start=c(10,50), end=c(20,60)), seqnames=c("1","1"))
names(rowRanges) = c("100_at", "200_at")
chipDf <- DataFrame(status=factor(c("control", "treated")),

totalCount=c(100, 100),
row.names=colnames(chip))

cSet <- ChIPseqSet(chipVals=chip, rowRanges=rowRanges, colData=chipDf)

integrateData(eSet, cSet, factor="status", reference="control")

mappedReads Mapped reads obtained from a anti-histone ChIP-seq experiment.

Description

The GRangesList contains two elements: "CEBPA_WT_1" and "CEBPA_KO_1". Both list ele-
ments are GRanges objects storing mapped reads from anti-H3K4me3 ChIP-seq experiments. The
first sample was a wild-type mouse cell line. The second sample was obtained from the same cell
line after CEPBA knock-out.

Usage

data(mappedReads)

Format

A GRangesList with two GRanges.

matchProbeToPromoter 13

Details

Duplicated reads and reads mapping to more than one genomic location were removed. Reads were
extended to the estimated DNA fragment size of 200bp towards the 3 prime end. Further, only reads
lying within certain regions of chromomse 1 were kept to reduce storage space.

Examples

data(mappedReads)
names(mappedReads)
mappedReads[[1]]

matchProbeToPromoter A function assigning promoter regions to given probe IDs.

Description

This function returns a GRangesList object asigning promoter regions to probes. The assignment
of transcripts to probes and the transcriptional start sites must be given as arguments.

Usage

matchProbeToPromoter(probeToTranscript, transcriptToTSS, promWidth = 4000, mode = "union", fix = "center")

Arguments

probeToTranscript

A list with character vectors as elements. The elements’ names are probe IDs
and the character vectors store the transcript IDs assigned to that probe.

transcriptToTSS

A data.frame with four columns:

1. Transcript ID as given in the argument probeToTranscript

2. Chromosome

3. Transcriptional start site in base pairs

4. Strand

promWidth Width of the promoter regions in base pairs. Promoters are defined as promWidth
base pairs upstream of the transcriptional start site. (default 4000bp)

mode How probes with multiple transcripts should be handled. Must be either "union",
"keepAll" or "dropMultiple". (default "union")

fix Denotes what to use as anchor when defining the promoter region. Must be
either "center", "start" or "end". "Center" means that the TSS is in the middle of
the promoter, whereas "end" means that the promoter is placed upsream of the
TSS. (default "center")

14 MixModel-class

Details

More than one transcript can be assigned to one probe in the given probeToTranscript argument.
Several options how to handle such cases can be choosen by argument mode. "union": The union
of all promoters is calculated and assigned to the probe. "keepAll": All promoters of all transcripts
are assigned to the probe. If some transcript have identical TSSs, the same promoter region occurs
several times. "dropMultiple": All probes that have more than one transcript with different TSS are
removed.

The argument transcriptToTSS must have at least 4 columns giving the information as described
above. The column names are not decisive, but their position.

Value

An object of class GRangesList with one element for each probe. If mode is not set to "dropMulti-
ple", GRanges may consist of more than one range. The names of the lists’ elements are the probe
IDs and additionally, each GRanges has a meta data column "probe" giving the corresponding probe
ID.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

summarizeReads

Examples

probeToTrans <- list("101"="ENST00011",
"102"=c("ENST00021", "ENST00022"),
"103"=NA)

transToTSS <- data.frame(
transID=c("ENST00011", "ENST00021", "ENST00022"),
chr=c("1", "1", "1"),
tss=c(100000, 200000, 201000),
strand=c("-", "+", "+"))

matchProbeToPromoter(probeToTrans, transToTSS,
promWidth=4000, mode="union")

matchProbeToPromoter(probeToTrans, transToTSS,
promWidth=4000, mode="keepAll")

MixModel-class Class "MixModel"

Description

This class stores a fitted mixture model.

Objects from the Class

A virtual Class: No objects may be created from it.

MixModel-class 15

Slots

mmData: Object of class "numeric" storing the data.

configuration: Object of class "list" storing configuration. See notes for details.

results: Object of class "list" storing results. See notes for details.

Methods

as.data.frame signature(object = "MixModel"): Returns a data.frame containing the z-scores
and classification results. The optional argument classificationMethod can be used to
change the default classification method.

classification signature(object = "MixModel", method = "character"): Assess classification
results.

classification signature(object = "MixModel", method = "missing"): Assess classification re-
sults.

components signature(object = "MixModel"): Assess mixture components.

mmData signature(object = "MixModel"): Assess data.

dim signature(x = "MixModel"): Assess dimension, i.e. numer of data points and number of
components.

length signature(x = "MixModel"): Number of data points.

listClassificationMethods signature(object = "MixModel"): List available classification meth-
ods.

show signature(object = "MixModel"): Print an object of MixModel on screen.

summary signature(object = "MixModel"): Returns a list of data frames summarizing the pa-
rameter estimations for each component.

weights signature(object = "MixModel"): Asses the components weights.

Note

Slots configuration and results are lists with named elements. The following elements make
up the minimum set of element that must be present. Depending on the method that was used to fit
the mixture model, more elements may be present.

Slot configuration has at least one element.

1. inits A list with at least two elements: component and pi. components contains a list of
objects of MixtureComponent-class storing the inital parameters of the mixture components.
pi is a vector storing the initial components’ weights.

Slot results has at least three elements.

1. components A list of objects of MixtureComponent-class storing the fitted mixture compo-
nents.

2. pi A numeric vector holding the estimated components’ weights.

3. classification A list of numeric vectors of the same length as data storing the classification
results.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

16 MixModelBayes-class

See Also

mlMixModel bayesMixModel MixModelML MixModelBayes

Examples

showClass("MixModel")

MixModelBayes-class Class "MixModelBayes"

Description

This class stores a Bayesian mixture model fitted by MCMC methods.

Objects from the Class

Objects can be created by calls of the form new("MixModelBayes", ...).

Slots

chains: Object of class "list" storing the course of the Markov chains for each parameter.

mmData: Object of class "numeric" storing the data.

configuration: Object of class "list" storing configuration. See notes for details.

results: Object of class "list" storing results. See notes for details.

Extends

Class "MixModel", directly.

Methods

chains signature(object = "MixModelBayes"): Gives access to the chains slot of the object.

acceptanceRate signature(object = "MixModelBayes"): Gives the acceptance rate for the pa-
rameter of the Dirichlet distribution. Acceptance rates between 0.3 and 0.7 are usually desired.
Values not smaller than 0.1 (not larger than 0.9) might still be acceptable. The acceptance rate
is only meaningful if the option weightsPrior was set to the Finite-dimensional Dirichlet
prior.

Note

In addition to the content described in MixModel, the following elements are present: Slot configuration:

1. initsAs in MixModel.

2. priorsA list specifying the prior distributions for the parameters of the components and the
parameter of the Dirichlet process.

3. chainA list with the technical specifications for the Markov Chains.

Slot results is exactly like in MixModel. Slot chains:

1. componentsA list giving the values for the parameters of the components in each iteration
after burn-in and application of thinning.

MixModelML-class 17

2. piA matrix giving the values for the weights pi of the components in each iteration after burn-
in and application of thinning.

3. dirichletParameterA vector giving the values for dirichlet Parameter in each iteration after
burn-in and application of thinning.

4. classificationA matrix giving the number of genes classified to each components in each iter-
ation after burn-in and application of thinning.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

bayesMixModel MixModel

Examples

showClass("MixModelBayes")

MixModelML-class Class "MixModelML"

Description

This class stores a mixture model fitted by a maximum likelihood approach.

Objects from the Class

Objects can be created by calls of the form new("MixModelML", ...). Usually, objects are created
by mlMixModel.

Slots

convergence: Object of class "list" storing information about the convergence of the EM algo-
rithm.

mmData: Object of class "numeric" storing the data.

configuration: Object of class "list" storing configuration. See notes for details.

results: Object of class "list" storing results. See notes for details.

Extends

Class "MixModel", directly.

Methods

convergence signature(object = "MixModelML"): Access to the convergence information.

18 MixtureComponent-class

Note

In addition to the content described in MixModel, the following elements are present: Slot configuration:

1. convergenceA list storing the maximum number of allowed iterations. And delta log likeli-
hood limit, that is interpreted as convergence, if the delta log likelihood falls below that limit.

Slot results is exactly like in MixModel. Slot convergence:

1. iterationsNumber of iterations ran.

2. deltaLogLikDelta of log likelihood observed in the last iteration.

3. logLikLog likelihood of the model fit.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

mlMixModel MixModel

Examples

showClass("MixModelML")

MixtureComponent-class

Class "MixtureComponent"

Description

A class representing a mixture component.

Objects from the Class

Objects can be created by calls of the form new("MixtureComponent", ...).

Slots

name: Object of class "character" giving the name or type of the mixture component.

parameters: Object of class "list" storing the parameters of corresponding distribution.

pdf: Object of class "function" giving the pdf of the mixture component.

color: Object of class "character" giving the color of the component that is used by plotting
methods.

Methods

show signature(object = "MixtureComponent"): A method plotting a summary of the compo-
nent on screen.

mlMixModel 19

Note

The element in parameters should be named by the argument names of pdf such that this call
works: do.call(object@pdf, c(list(x=data), object@parameters))

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

MixModel

Examples

showClass("MixtureComponent")

mlMixModel Fits a mixture model using the maximum likelihood principle.

Description

This method calculates the maximum likelihood estimations of a mixture model using the expectation-
maximization (EM) algorithm. The mixture model may consists of normal components (with a fixed
expectation of 0) and exponential components, which may be mirrored in order to model negative
values.

Usage

mlMixModel(z, normNull = c(), expNeg = c(), expPos = c(), sdNormNullInit = c(), rateExpNegInit = c(), rateExpPosInit = c(), piInit = c(), maxIter = 500, tol = 0.001)

Arguments

z Observed values.
normNull Indices of the normal components (that have µ = 0).
expNeg Indices of the mirrored exponential components.
expPos Indices of the exponential components.
sdNormNullInit Initial standard deviations of the normal components.
rateExpNegInit Initial rates ("lambda") of the exponential components.
rateExpPosInit Initial rates ("lambda") of the exponential components.
piInit Initial weights of the components.
maxIter Maximum number of iterations.
tol Threshold for convergence. The minimum log likelihood gain between two iter-

ations that must be achieved to continue.

Details

The EM algorithm is known to converge slowly in some cases and local maxima may avoid finding
the optimal solution. Users should try different initial values and different convergence criteria.

The components’ indices do not influence the result, but may influence the order in which compo-
nents are listed or ploted by downstream methods. Indices must be successive integers from 1 to
n.

20 normalize

Value

An object of MixModelML-class storing results, data, initial values and information about the con-
vergence.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

MixModelML-class

Examples

z <- c(rnorm(1000, 0, 0.5), rnorm(1000, 0, 1))
mm <- mlMixModel(z, normNull=1:2, sdNormNullInit=c(0.1, 0.2),

pi=c(1/2, 1/2), maxIter=500, tol=0.001)
mm

z <- c(rnorm(1000, 0, 3), rnorm(1000, 0, 5), rexp(1000, 5), -rexp(1000, 5))
mm <- mlMixModel(z, normNull=1:2, expNeg=3, expPos=4,

sdNormNullInit=c(1, 2), rateExpNegInit=8, rateExpPosInit=8,
pi=c(1/4, 1/4, 1/4, 1/4), maxIter=500, tol=0.001)

mm

normalize Normalization of ChIP-seq and other count data

Description

This function implements some methods for between-sample normalization of count data. Although
these methods were developed for RNA-seq data, they are also useful for ChIP-seq data normaliza-
tion after reads were counted within regions or bins. Some methods may also be applied to count
data after within-sample normalization (e.g. TPM or RPKM values).

Usage

S4 method for signature 'ChIPseqSet'
normalize(object, method, isLogScale = FALSE, trim = 0.3, totalCounts)
S4 method for signature 'ExpressionSet'
normalize(object, method, isLogScale = FALSE, trim = 0.3, totalCounts)

Arguments

object An object of class ChIPseqSet or ExpressionSet that contains the raw data.

method Normalization method, either "scale", "scaleMedianRegion", "quantile" or "tmm".

isLogScale Indicates whether the raw data in object is already logarithmized. Default value
is FALSE. Logarithmized data will be returned on the log scale, non logarith-
mized data will remain on its original scale.

trim Only used if method is "tmm". Indicates the fraction of data points that should
be trimmed before calculating the mean. Default value is 0.3.

normalize 21

totalCounts Only used if method is "scale". A vector giving the total number of reads for
each sample. The Vector’s length must equal the number of samples in object.
Default values are the sums over all features for each sample (i.e. colsums of
object).

Details

The following normalization methods are implemented:

1. scaleSamples are scaled by a factor such that all samples have the same number N of reads
after normalization, where N is the median number of reads observed accross all samples.
If the argument totalCounts is missing, the total numbers of reads are calculated from the
given data. Otherwise, the values in totalCounts are used.

2. scaleMedianRegionThe scaling factor sj for the j-th sample is defined as

sj = mediani
kij∏m

v=1 kiv
.

kij is the value of region i in sample j. See Anders and Huber (2010) for details.

3. quantileQuantile normalization is applied to the ChIP-seq values such that each sample has
the same cdf after normalization.

4. tmmThe trimmed mean M-value (tmm) normalization was proposed by Robinson and Oshlack
(2010). Here, the logarithm of the scaling factor for sample i is calculated as the trimmed mean
of

log(ki,j/mj).

Variable mj denotes the geometric mean of region j. Argument trim is set to 0.3 as default
value, so that the smallest 15% and the largest 15% of the log ratios are trimmed before
calculating the mean.

Value

An object of the same class as the input object with the normalized data.

Author(s)

Hans-Ulrich Klein (hklein@broadinstitute.org)

References

Anders and Huber. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.\
Robinson and Oshlack. A scaling normalization method for differential expression analysis of
RNA-seq data. Genome Biol. 2010;11(3):R25

Examples

set.seed(1234)
chip <- matrix(c(rpois(20, lambda=10), rpois(20, lambda=20)), nrow=20,

dimnames=list(paste("feature", 1:20, sep=""), c("sample1", "sample2")))
rowRanges <- GRanges(IRanges(start=1:20, end=1:20),

seqnames=c(rep("1", 20)))
names(rowRanges) = rownames(chip)
cSet <- ChIPseqSet(chipVals=chip, rowRanges=rowRanges)

tmmSet <- normalize(cSet, method="tmm", trim=0.3)

22 normalizeChIP

mean(log(chipVals(tmmSet))[, 1], trim=0.3) -
mean(log(chipVals(tmmSet))[, 2], trim=0.3) < 0.01

quantSet <- normalize(cSet, method="quantile")
all(quantile(chipVals(quantSet)[, 1]) == quantile(chipVals(quantSet)[, 2]))

normalizeChIP Normalization of ChIP-seq count data. (deprecated)

Description

This method is deprecated. Use normalize instead. This method implements some normalization
approaches for ChIP-seq data after counting reads within regions or bins. Similar methods are often
applied to RNA-seq data after counting reads within genes.

Usage

normalizeChIP(object, method)

Arguments

object A ChIPseqSet object as generated by summarizeReads

method Normalization method, either "scaleTotal", "scaleRegion", "scaleMedianRegion"
or "quantile"

Details

The following normalization methods are implemented:

1. scaleTotalSamples are scaled by a factor such that all samples have the same number of reads
(the median number of reads observed accross all samples before normalization). All reads
are used for calculating the scaling factor.

2. scaleRegionSamples are scaled by a factor such that all samples have the same number of
reads (the median number of reads observed accross all samples before normalization). In
contrast to scaleTotal, only reads falling into the regions (genes, promoters) that were used to
create the given ChIPseqSet object are used for calculating the scaling factor. Hence, the sum
of all columns of the returned ChIPseqSet are equal after applying this method.

3. scaleMedianRegionThe scaling factor sj for the j-th sample is defined as:

sj = mediani
kij∏m

v=1 kiv

kij is the value of region i in sample j. See Anders and Huber (2010) for details.

4. quantileQuantile normalization is applied to the ChIP-seq values such that each sample has
the same cdf after normalization.

Value

An ChIPseqSet-class object with normalized ChIP-seq values.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de

plotChains 23

References

Anders and Huber; Differential expression analysis for sequence count data; Genome Biology 2010,
11:R106

See Also

summarizeReads

Examples

chip <- matrix(c(5,6,5,6,10,12,10,12), nrow=4,
dimnames=list(c("f1", "f2", "f3", "f4"), c("s1", "s2")))

rowRanges <- GRanges(IRanges(start=c(10, 20, 30, 40), end=c(11, 21, 31, 41)),
seqnames=c("1", "1", "1", "1"))

names(rowRanges) = rownames(chip)
chipDf <- DataFrame(totalCount=c(100, 100),

row.names=colnames(chip))
cSet <- ChIPseqSet(chipVals=chip, rowRanges=rowRanges, colData=chipDf)

chipVals(cSet)
chipVals(normalize(cSet, method="scaleMedianRegion"))
chipVals(normalize(cSet, method="quantile"))

plotChains Produces trace plots for a Bayesian mixture model

Description

This function method draws trace plots for a Bayesian mixture model, e.g. visualizes the course of
the Markov Chains. Inspection of the Markov Chains is important to determine convergence of the
chains, which is necessary for sensible results.

Usage

plotChains(object, chain, component, itb = 1, thin = 1, cols, ...)

Arguments

object An object of MixModelBayes-class

chain A character of length one giving the name of the paramter, which chain should
be plotted. Can be omitted, if component is given. Then, all parameters of the
given components are plotted.

component An integer specifying the components, which parameter chains should be plot-
ted. Can be omitted, if chain is given. Then, all trace plots are generated for all
components having the parameter specified via argument chain.

itb Number of iterations used for burn-in. The burn-in is relative to the output of
bayesMixModel, e.g., any burn-in specified here is added to the burn-in that was
specified when calling bayesMixModel.

thin Thinning value for the iterations after burn-in. The thinning is relative to the
output of bayesMixModel, e.g., any thinning specified here multiplies by the
thinning that was specified in bayesMixModel.

24 plotClassification

cols Number of columns to be used in the plot. Optional, if omitted, the number of
columns and rows are choosen be the method itself.

... Further arguments passed to plot.

Details

The number of iterations necessary until a Markov chain reaches stationarity depends on the specific
model and data. For any inference based on Markov Chain Monte Carlo methods, it is therefore
necessary to inspect the convergence of Markov Chains. One way to do this is visual inspection of
trace plots using this method.

If argument main is passed to this method, it should have as many elements as chains are plotted.
Otherwise, vector main is reapted.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de) Martin Schaefer (martin.schaefer@udo.edu)

See Also

bayesMixModel, MixModelBayes-class

Examples

z <- c(rnorm(1000, 0, 3), rnorm(1000, 0, 5), rexp(1000, 5), -rexp(1000, 5))
mm <- bayesMixModel(z, normNull=1:2, expNeg=3, expPos=4,

sdNormNullInit=c(1, 2), rateExpNegInit=8, rateExpPosInit=8,
shapeNorm0=c(1, 1), scaleNorm0=c(1, 1),
shapeExpNeg0=c(1, 1), scaleExpNeg0=c(1, 1),
shapeExpPos0=c(1, 1), scaleExpPos0=c(1, 1),
sdAlpha=1, itb=200, nmc=1000, thin=10)

plotChains(mm, chain="pi")
plotChains(mm, component=c(2,3))

plotClassification Plot classification obtained from a mixture model.

Description

This method visualizes the assignment of data points to the mixture components of the given mix-
ture model. The components are plotted on the y-axis and the data on the x-axis. Data points are
plotted in the color of the respective mixture component.

Usage

plotClassification(object, method, ...)

Arguments

object An object of MixModel-class.

method Depending on the type of the mixture model (ML, Bayes), different approaches
to obtain a classification are available. Also the default approach may vary.

... Further arguments passed to plot.

plotComponents 25

Details

If method is given, it must be a valid option for method classification. E.g., if bayesMixModel
was used to create the mixture model, valid options are "maxDens", "median" and "mode".

Arguments "col" and "pch" can be given to specify the color and the shape of the points plotted.
Their length must equal to the number of components.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

MixModel-class listClassificationMethods

Examples

z <- c(rnorm(100, 0, 10), rnorm(100, 0, 2), rexp(100, 1/2), -rexp(100, 1/2))
mm <- mlMixModel(z, normNull=1:2, expNeg=3, expPos=4,

sdNormNullInit=c(1, 2), rateExpNegInit=c(1/2), rateExpPosInit=c(1/2),
pi=c(1/4, 1/4, 1/4, 1/4), maxIter=50, tol=0.01)

plotClassification(mm)

plotComponents Plots the mixture density together with the densities of all single com-
ponents.

Description

This function plots the mixture pdf, the estimated data pdf and the weighted pdfs of all components
of the given mixture model. The plot is useful to assess the fit of the model.

Usage

plotComponents(object, density = FALSE, ...)

Arguments

object A MixModel-class object to be plotted.

density A logical indicating whether the data distribution should be plotted as histogram
(FALSE) or as density (TRUE) estimated using kernel density estimation.

... Further arguments passed to plot.

Details

If the argument "col" is given, the first color is used for the mixture pdf. The following colors (2 to
n+1) are used for the n mixture components’ pdfs. If density is set to TRUE, a further color (n+2)
must be given, that is used for the data pdf. The same applies for the argument "lty", which can be
given to specify the line type used to plot the densities.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

26 summarizeReads

See Also

MixModel-class

Examples

z <- c(rnorm(100, 0, 1), rnorm(100, 0, 2), rexp(100, 1/2), -rexp(100, 1/2))
mm <- mlMixModel(z, normNull=1:2, expNeg=3, expPos=4,

sdNormNullInit=c(1, 2), rateExpNegInit=c(1/2), rateExpPosInit=c(1/2),
pi=c(1/4, 1/4, 1/4, 1/4), maxIter=50, tol=0.01)

plotComponents(mm)

summarizeReads Count reads lying within given regions.

Description

This function takes reads from e.g. ChIP-seq experiments and regions, e.g. promoters of genes, and
assigns the number of overlapping reads to that region. This method was written particularly with
regard to histone ChIP-seq experiments. Some histone modifications mainly occur at transcriptional
start sites and thus ChIP-seq values can be assigned to genes by counting the number of reads
within genes’ pomoter regions. However, some genes may have several transcript and hence several
promoters. Different options for handling multiple promoters are implemented. This method is also
useful when integrating microarray expression data and ChIP-seq data, since most array platforms
are gene centric and have probes that measure several transcripts.

Usage

summarizeReads(object, regions, summarize)

Arguments

object A GRangesList with one GRanges object for each sample storing the ChIP-seq
reads. The names of the GRangesList elements are used as sample names.

regions An object of type GRangesList storing the promoter regions. Each element can
be interpreted as gene or probe that has one or more promoters. The names
of the lists’ elements are used as row names. Alternatively, regions can be a
GRanges object which as then handled like a GRangesList object with only one
region in each list element. names of the GRanges are used as row names in this
case.

summarize Defines how regions with several ranges are handled. "average" means that the
mean count of reads across all ranges is assigned to the region whereas "add"
means that all counts are simply added (default).

Details

This function is usually applied after calling matchProbeToPromoter. When matchProbeToPromoter
is used with mode "union", it is recommended to use "add". If the option "keepAll" had been used,
one might want to use "average".

This method uses countOverlaps and counts each read that overlaps with at least one base.

transToTSS 27

Value

Returns a ChIPseqSet with number of rows equal to the length of regions and number of samples
equal to the length of object.

Author(s)

Hans-Ulrich Klein (h.klein@uni-muenster.de)

See Also

matchProbeToPromoter ChIPseqSet-class

Examples

chipSeq <- GRangesList()
chipSeq[[1]] <- GRanges(seqnames=c("1", "1", "1", "1"),

ranges=IRanges(start=c(97900, 198200, 198600, 202500),
end=c(98100, 198400, 198800, 202700)),

strand=c("+", "+", "+", "+"))
chipSeq[[2]] <- GRanges(seqnames=c("1", "1", "1", "1"),

ranges=IRanges(start=c(97900, 198200, 198600, 300000),
end=c(98100, 198400, 198800, 300200)),

strand=c("+", "+", "+", "+"))
names(chipSeq) = c("sample1", "sample2")

promoters <- GRanges(seqnames=c("1", "1", "1"),
ranges=IRanges(start=c(98000, 198000, 202000),

end=c(101999, 201999, 205999)),
strand=c("-", "+", "+"),
probe=c("101", "102", "102"))

promoters <- split(promoters, elementMetadata(promoters)$probe)

chipSet <- summarizeReads(chipSeq, promoters, summarize="add")
chipVals(chipSet)

transToTSS A data frame with Ensemble transcript IDs and transcriptional start
sites.

Description

The data frame stores Ensemble transcript IDs and repective chromosomes, transcriptional start
sites and strands for mus musculus (mm10).

Usage

data(transToTSS)

28 transToTSS

Format

A data frame with 277 mouse transcripts with the following 4 variables:

ensembl_transcript_id A character giving the Ensemble transcript ID.

chromosome_name A character with the respective chromomse name.

transcript_start An integer storing the respective transcriptional start site.

strand An integer storing the respective strand information.

Details

Given a character vector transcripts with the Ensemble transcript IDs, a data frame like this can
be obtained via biomaRt:

library("biomaRt") mart <- useMart("ensembl", dataset="mmusculus_gene_ensembl") transToTSS
<- getBM(attributes=c("ensembl_transcript_id", "chromosome_name", "transcript_start",
"transcript_end", "strand"), filters="ensembl_transcript_id", values=transcripts,
mart=mart)

Source

http://www.ensembl.org

Examples

data(transToTSS)
head(transToTSS)

Index

∗ classes
ChIPseqSet-class, 7
MixModel-class, 14
MixModelBayes-class, 16
MixModelML-class, 17
MixtureComponent-class, 18

∗ cross correlation
calculateCrossCorrelation, 5

∗ datasets
eSet, 9
fpkm, 9
mappedReads, 12
transToTSS, 27

∗ normalization
normalize, 20

acceptanceRate (MixModelBayes-class), 16
acceptanceRate,MixModelBayes-method

(MixModelBayes-class), 16
as.data.frame,MixModel-method

(MixModel-class), 14

bayesMixModel, 2, 16, 17, 23–25
bayesMixModel,numeric-method

(bayesMixModel), 2

calculateCrossCorrelation, 5
calculateCrossCorrelation,GRanges-method

(calculateCrossCorrelation), 5
chains (MixModelBayes-class), 16
chains,MixModelBayes-method

(MixModelBayes-class), 16
ChIPseqSet, 11, 20, 22
ChIPseqSet (ChIPseqSet-class), 7
ChIPseqSet,matrix,GRanges-method

(ChIPseqSet-class), 7
ChIPseqSet,matrix,GRangesList-method

(ChIPseqSet-class), 7
ChIPseqSet-class, 7
chipVals (ChIPseqSet-class), 7
chipVals,ChIPseqSet-method

(ChIPseqSet-class), 7
chipVals<- (ChIPseqSet-class), 7

chipVals<-,ChIPseqSet,matrix-method
(ChIPseqSet-class), 7

classification (MixModel-class), 14
classification,MixModel,character-method

(MixModel-class), 14
classification,MixModel,missing-method

(MixModel-class), 14
components (MixModel-class), 14
components,MixModel-method

(MixModel-class), 14
convergence (MixModelML-class), 17
convergence,MixModelML-method

(MixModelML-class), 17
countOverlaps, 26
cpm (ChIPseqSet-class), 7
cpm,ChIPseqSet-method

(ChIPseqSet-class), 7

dim,MixModel-method (MixModel-class), 14

eSet, 9
ExpressionSet, 9, 11, 20

fpkm, 9

getAlignmentQuality, 10
getAlignmentQuality,character-method

(getAlignmentQuality), 10
GRanges, 6, 12
GRangesList, 12

integrateData, 11
integrateData,ExpressionSet,ChIPseqSet,character,character-method

(integrateData), 11
integrateData,ExpressionSet,ChIPseqSet,character,missing-method

(integrateData), 11
integrateData,ExpressionSetIllumina,ChIPseqSet,character,character-method

(integrateData), 11
integrateData,ExpressionSetIllumina,ChIPseqSet,character,missing-method

(integrateData), 11

length,MixModel-method
(MixModel-class), 14

listClassificationMethods, 25

29

30 INDEX

listClassificationMethods
(MixModel-class), 14

listClassificationMethods,MixModel-method
(MixModel-class), 14

mappedReads, 12
matchProbeToPromoter, 13, 26, 27
matchProbeToPromoter,list,data.frame-method

(matchProbeToPromoter), 13
MixModel, 16–19
MixModel-class, 14
MixModelBayes, 16
MixModelBayes-class, 16
MixModelML, 16
MixModelML-class, 17
MixtureComponent-class, 18
mlMixModel, 16–18, 19
mlMixModel,numeric-method (mlMixModel),

19
mmData (MixModel-class), 14
mmData,MixModel-method

(MixModel-class), 14

normalize, 20
normalize,ChIPseqSet-method

(normalize), 20
normalize,ExpressionSet-method

(normalize), 20
normalizeChIP, 8, 12, 22
normalizeChIP,ChIPseqSet,character-method

(normalizeChIP), 22

plot, 24, 25
plotChains, 4, 5, 23
plotChains,MixModelBayes-method

(plotChains), 23
plotClassification, 24
plotClassification,MixModel-method

(plotClassification), 24
plotComponents, 25
plotComponents,MixModel-method

(plotComponents), 25

RangedSummarizedExperiment, 7, 8

show,MixModel-method (MixModel-class),
14

show,MixtureComponent-method
(MixtureComponent-class), 18

summarizeReads, 8, 12, 14, 22, 23, 26
summarizeReads,GRangesList,GRanges,character-method

(summarizeReads), 26
summarizeReads,GRangesList,GRanges,missing-method

(summarizeReads), 26

summarizeReads,GRangesList,GRangesList,character-method
(summarizeReads), 26

summarizeReads,GRangesList,GRangesList,missing-method
(summarizeReads), 26

summary,MixModel-method
(MixModel-class), 14

summary,MixModelBayes-method
(MixModel-class), 14

transToTSS, 27

weights,MixModel-method
(MixModel-class), 14

	bayesMixModel
	calculateCrossCorrelation
	ChIPseqSet-class
	eSet
	fpkm
	getAlignmentQuality
	integrateData
	mappedReads
	matchProbeToPromoter
	MixModel-class
	MixModelBayes-class
	MixModelML-class
	MixtureComponent-class
	mlMixModel
	normalize
	normalizeChIP
	plotChains
	plotClassification
	plotComponents
	summarizeReads
	transToTSS
	Index

