
Package ‘TOAST’
November 21, 2024

Type Package

Title Tools for the analysis of heterogeneous tissues

Version 1.20.0

Description This package is devoted to analyzing high-
throughput data (e.g. gene expression microarray, DNA methylation microarray, RNA-
seq) from complex tissues. Current functionalities include 1. detect cell-type specific or cross-
cell type differential signals 2. tree-
based differential analysis 3. improve variable selection in reference-
free deconvolution 4. partial reference-free deconvolution with prior knowledge.

Author Ziyi Li and Weiwei Zhang and Luxiao Chen and Hao Wu

Maintainer Ziyi Li <zli16@mdanderson.org>

License GPL-2

Encoding UTF-8

LazyData false

Depends R (>= 3.6), EpiDISH, limma, nnls, quadprog

biocViews DNAMethylation, GeneExpression, DifferentialExpression,
DifferentialMethylation, Microarray, GeneTarget, Epigenetics,
MethylationArray

BugReports https://github.com/ziyili20/TOAST/issues

Imports stats, methods, SummarizedExperiment, corpcor, doParallel,
parallel, ggplot2, tidyr, GGally

Suggests BiocStyle, knitr, rmarkdown, gplots, matrixStats, Matrix

VignetteBuilder knitr

NeedsCompilation no

git_url https://git.bioconductor.org/packages/TOAST

git_branch RELEASE_3_20

git_last_commit a33fcef

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-11-20

1

https://github.com/ziyili20/TOAST/issues

2 assignCellType

Contents
assignCellType . 2
beta_emp . 3
CBS_PBMC_array . 3
cedar . 4
ChooseMarker . 7
csDeconv . 9
csTest . 10
DEVarSelect . 12
findRefinx . 13
fitModel . 14
GetPrior . 15
makeDesign . 16
MDeconv . 17
myprojectMix . 19
myRefFreeCellMix . 19
myRefFreeCellMixInitialize . 20
plotCorr . 21
RA_100samples . 22
Tsisal . 23

Index 25

assignCellType Align cell types when reference proportions are known

Description

Align target proportions with reference proportions by pearson correlation coefficients.

Usage

assignCellType(input,reference)

Arguments

input Input proportiona matrix of dimension N by K.

reference Reference proportion matrix of dimension N by K.

Value

The aligned proportion matrix, following the cell type ordering of reference proportion matrix.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

beta_emp 3

Examples

generate estimated proportion matrix
estProp <- matrix(abs(runif(50*4,0,1)), 50, 4)
estProp <- sweep(estProp, 1, rowSums(estProp), "/")

generate reference proportion matrix
refProp <- matrix(abs(runif(50*4,0,1)), 50, 4)
refProp <- sweep(refProp, 1, rowSums(refProp), "/")

estProp_aligned = assignCellType(input = estProp,
reference = refProp)

beta_emp Simulated methylation 450K array data with related

Description

This dataset is a list containing two matrices, one of which is methylation 450K array data of 3000
CpG sites on 50 samples, the other is methylation 450K array data of 3000 matched CpG sites
on three immune cell types. The first dataset is generated by simulation. It originally has 459226
features and 50 samples.We reduce it to 3000 CpGs by random selection.

Usage

data("beta_emp")

Format

The format is: List of 2 $ Y.raw: num [1:3000, 1:50] 0.7661 0.0968 0.8882 0.0286 0.6956-
attr(*, "dimnames")=List of 2$: chr [1:3000] "cg08752431" "cg14555682" "cg23086843"
"cg20308511"$: NULL $ ref.m: num [1:3000, 1:3] 0.7712 0.0996 0.9065 0.037 0.7242 ...
..- attr(*, "dimnames")=List of 2$: chr [1:3000] "cg08752431" "cg14555682" "cg23086843"
"cg20308511"$: chr [1:3] "CD4T" "CD8T" "BCell"

Examples

data(beta_emp)

CBS_PBMC_array An example dataset for partial reference-free cell composition estima-
tion from tissue gene expression

Description

The dataset contains 511 microarray gene expressions for 20 PBMC samples (mixed_all) and
PBMC microarray reference for the matched 511 genes from 5immune cell types (LM_5). It also
contains the true cell compositions from cell sorting experiment (trueProp) and prior knowledge of
cell compositions for 5 cell types in PBMC (prior_alpha and prior_sigma).

4 cedar

Usage

data("CBS_PBMC_array")

References

Newman, Aaron M., et al. "Robust enumeration of cell subsets from tissue expression profiles."
Nature methods 12.5 (2015): 453.

Rahmani, Elior, et al. "BayesCCE: a Bayesian framework for estimating cell-type composition
from DNA methylation without the need for methylation reference." Genome biology 19.1 (2018):
141.

Examples

data("CBS_PBMC_array")
CBS_PBMC_array$mixed_all[1:5,1:5]
head(CBS_PBMC_array$LM_5,3)
head(CBS_PBMC_array$trueProp,3)
CBS_PBMC_array$prior_alpha
CBS_PBMC_array$prior_sigma

cedar Testing cell type specific differential signals for specified phenotype by
considering DE/DM state corrleation between cell types.

Description

This function provides posterior probability of whether a feature is DE/DM in certain cell type given
observed bulk data.

Usage

cedar(Y_raw, prop, design.1, design.2=NULL, factor.to.test=NULL,
pval = NULL, p.adj = NULL, tree = NULL, p.matrix.input = NULL,
de.state = NULL, cutoff.tree = c('fdr', 0.01),
cutoff.prior.prob = c('pval', 0.01),
similarity.function = NULL, parallel.core = NULL, corr.fig = FALSE,
run.time = TRUE, tree.type = c('single','full'))

Arguments

Y_raw matrix of observed bulk data, with rows representing features and columns rep-
resenting samples

prop matrix of cell type composition of samples, with rows representing samples and
columns representing cell types

design.1 covariates with cell type specific effect, with rows representing samples and
columns representing covariates

design.2 covariates without cell type sepcific effect, with rows representing samples and
columns representing covariates

factor.to.test A phenotype name, e.g. "disease", or a vector of contrast terms, e.g. c("disease",
"case", "control").

cedar 5

pval matrix of p-values, with rows representing features and columns representing
cell types. colnames must be same as input of prop

p.adj matrix of adjusted p-values, with rows representing features and columns repre-
senting cell types. colnames must be same as input of prop

tree tree structure between cell types, a matrix with row representing layers andcol-
umn representing cell types (column name is required)

p.matrix.input prior probability on each node of the tree structure. only work when tree struc-
ture has been specified. the dimension must be same as tree input.

de.state DE/DM state of each feature in each cell type, with row representing features
and column representing cell types (1:DE/DM, 0:non-DE/DM)

cutoff.tree cut off used to define DE state to estimate tree could be ’fdr’ or ’pval’ default it
’fdr’=0.01. suggest to start with restrictive cut off and change to relative loose
value when the restrictive cut off is failed

cutoff.prior.prob

cut off used to define DE state to estimate prior probs of nodes on tree could be
’fdr’ or ’pval’ default it ’fdr’=0.01. suggest to start with restrictive cut off and
change to relative loose value when the restrictive cut off is failed

similarity.function

custom function used to calculate similarity between cell types that used for tree
structure estimation. the input of the custom is assumed to be a matrix of log
transformed p-value. dimension is: selected gene number * cell number

parallel.core number of cores for parallel running, default is NULL

corr.fig a boolean value, whether to plot corrrelation between cell types use function
plotCorr()

run.time a boolean value, whether to report running time in seconds

tree.type tree type for inference, default is c(’single’,’full’)

Value

A list

toast_res If pval is NULL, then TOAST result by function csTest() is returned

tree_res matrix of posterior probability of each feature for each cell type

fig If corr.fig = TRUE, then figure show DE/DM state correlation between cell types
will be returned

time_used If run.time = TRUE, then running time (seconds) of CeDAR will be returned

Author(s)

Luxiao Chen <luxiao.chen@emory.edu>

Examples

N <- 300 # simulation a dataset with 300 samples
K <- 3 # 3 cell types
P <- 500 # 500 features

simulate proportion matrix
Prop <- matrix(runif(N*K, 10,60), ncol=K)
Prop <- sweep(Prop, 1, rowSums(Prop), FUN="/")

6 cedar

colnames(Prop) <- c("Neuron", "Astrocyte", "Microglia")

simulate phenotype names
design <- data.frame(disease=factor(sample(0:1,size = N,replace=TRUE)),

age=round(runif(N, 30,50)),
race=factor(sample(1:3, size = N,replace=TRUE)))

Y <- matrix(rnorm(N*P, N, P), ncol = N)
rownames(Y) <- paste0('gene',1:nrow(Y))
d1 <- data.frame('disease' = factor(sample(0:1,size = N,replace=TRUE)))

Only provide bulk data, proportion
res <- cedar(Y_raw = Y, prop = Prop,

design.1 = design[,1:2],
design.2 = design[,3],
factor.to.test = 'disease',
cutoff.tree = c('pval',0.1),
corr.fig = TRUE,
cutoff.prior.prob = c('pval',0.1))

result of toast (independent test)
str(res$toast_res)
posterior probability of DE/DM of cedar with single layer tree structure
head(res$tree_res$single$pp)
posterior probability of DE/DM of cedar with muliple layer tree structure
head(res$tree_res$full$pp)
estimated tree structure of three cell types
head(res$tree_res$full$tree_structure)
scatter plot of -log10(pval) showing DE/DM state correlation between cell types
res$fig

Using custom similarity function to estimate tree structure
In CeDAR, the input is assumed to be a matrix of log transformed p-values
with row representing genes and columns represening cell types

sim.fun <- function(log.pval){
similarity.res <- sqrt((1 - cor(log.pval, method = 'spearman'))/2)
return(similarity.res)

}

res <- cedar(Y_raw = Y, prop = Prop,
design.1 = design[,1:2],
design.2 = design[,3],
factor.to.test = 'disease',
cutoff.tree = c('pval',0.1),
similarity.function = sim.fun,
corr.fig = FALSE,
cutoff.prior.prob = c('pval',0.1))

posterior probability of DE/DM of cedar with muliple layer tree structure
head(res$tree_res$full$pp)

Using custom tree structure as input
cell type 1 and cell type 3 are more similar
tree.input <- rbind(c(1,1,1),c(1,2,1),c(1,2,3))
If column name is provided for the matrix; make sure it is same as variable Prop

ChooseMarker 7

colnames(tree.input) <- c("Neuron", "Astrocyte", "Microglia")

res <- cedar(Y_raw = Y, prop = Prop,
design.1 = design[,1:2],
design.2 = design[,3],
factor.to.test = 'disease',
cutoff.tree = c('pval',0.1),
tree = tree.input,
corr.fig = FALSE,
cutoff.prior.prob = c('pval',0.1))

posterior probability of DE/DM of cedar with muliple layer tree structure
head(res$tree_res$custom$pp)

Using custom tree structure and prior probability of each node as input
cell type 1 and cell type 3 are more similar
tree.input <- rbind(c(1,1,1),c(1,2,1),c(1,2,3))
colnames(tree.input) <- c("Neuron", "Astrocyte", "Microglia")

p.matrix.input <- rbind(c(0.2,0.2,0.2), c(0.5,0.25,0.5), c(0.5,1,0.5))
marginally, each cell type has 0.05 (cell 1: 0.2 * 0.5 * 0.5, cell 2: 0.2 * 0.25 * 1)
probability to be DE for a randomly picked gene
there will be about 50% DE genes in cell type 1 overlaped with cell type 3;
while there will be about 25% DE genes in cell type 1 overlaped with cell type 2

res <- cedar(Y_raw = Y, prop = Prop,
design.1 = design[,1:2],
design.2 = design[,3],
factor.to.test = 'disease',
cutoff.tree = c('pval',0.1),
tree = tree.input,
p.matrix.input = p.matrix.input,
corr.fig = FALSE,
cutoff.prior.prob = c('pval',0.1))

posterior probability of DE/DM of cedar with muliple layer tree structure
head(res$tree_res$custom$pp)

ChooseMarker Choose cell type-specific markers from pure cell type profiles or single
cell data

Description

Choose cell type-specific markers from pure cell type profiles generated by microarray or RNA-seq,
or from single cell RNA-seq data by differential analysis.

Usage

ChooseMarker(pure_all, CellType, nMarkCT = 10, chooseSig = FALSE, verbose = TRUE)

8 ChooseMarker

Arguments

pure_all Input pure cell type profile matrix or single cell data matrix. Rows are for genes,
columns are for cell types or cells.

CellType A list object consisting of cell type information for columns in pure_all. Each el-
ement is a cell type, and contains the corresponding column number in pure_all
matrix. For example, CellType = list(BCell = 1:3, CD4T = 4:5).

nMarkCT Number of markers chosen per cell type. Default is 10.

chooseSig A boolean variable representing whether to consider the significance of selected
markers. When chooseSig = FALSE, all nMarkerCT number of markers will
be chosen per cell type. Otherwise the non-significant (p value > 0.05) markers
will be filtered out.

verbose A boolean variable of whether to output messages.

Details

Here we provide more details for CellType variable. This variable should be a list, with each
element being the corresponding column numbers in pure_all for each cell type. For example,
suppose pure_all is a 1000 by 300 matrix with row being genes and column being cells (or cell
types). The first 1 to 100 columns are cell A, 101 to 200 columns are cell B, and 201 to 300
columns are cell C. Then CellType should be assigned as CellType = list(A = 1:100, B = 101:200,
C = 201:300). If pure_all only has three columns for three cell types A, B and C, then CellType =
list(A = 1, B = 2, C = 3).

Value

A list variable, including the selected variables for all cell types.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhenxing Guo, Ying Cheng, Peng Jin, Hao Wu. "Robust partial reference-free cell com-
poisiton estimation from tissue expression profiles."

Examples

randomly simulate pure cell type profiles
pure_all <- matrix(abs(rnorm(1000*9)), 1000, 9)
CellType <- list(CellA = 1:3,

CellB = 4:6,
CellC = 7:9)

choose significant markers
SelMarker <- ChooseMarker(pure_all, CellType,

nMarkCT = 30,
chooseSig = TRUE,
verbose = FALSE)

csDeconv 9

csDeconv Improve reference-free deconvolution using cross-cell type differential
analysis

Description

This function improve the feature selection in reference-free deconvolution through cross-cell type
differential analysis

Usage

csDeconv(Y_raw, K, FUN, nMarker = 1000,
InitMarker = NULL, TotalIter = 30, bound_negative = FALSE)

Arguments

Y_raw A G*N matrix, G is the number of features, N is the number of subjects; or a
SummarizedExperiment object.

K The number of cell types. Need to be specified a priori.

FUN The reference-free deconvolution function, this function should take Y_raw and
K, and the return values should be a N by K proportion matrix. N is the number
of samples and K is the number of cell types. Default function is a wrapper of
the RefFreeCellMix() function from CRAN package RefFreeEWAS.

nMarker The number of markers used in the deconvolution. Default is 1000.

InitMarker A vector of length L to represent the selection of inital markers. L should be
equal or smaller than G. If G is large, it is recommended that L is much smaller
than G. If not specified, the most variable nMarker features will be used.

TotalIter The total number of iterations of applying cross-cell type differential analysis.
Default is 30.

bound_negative Whether to bound all negative parameter estimators to zero.

Value

allProp A list of estimated proportions from all iterations.

allRMSE A vector of root mean squared errors (RMSE) from all iteratoins.

estProp A N*K matrix representing the mixture proportions of K cell types in N subjects,
chosen from allProp with the smallest RMSE.

updatedInx Selected variable index from the algorithm.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li and Hao Wu. "Improving reference-free cell composition estimation by cross-cell type
differential analysis".

10 csTest

Examples

Y_raw <- abs(matrix(runif(10000*20, 0,1),10000,20))
K <- 3

wrap your reference-free
deconvolution method into a function
this function should take Y and K as input
and output a N by K proprotion matrix
here we use RefFreeCellMix() as an example
outT <- csDeconv(Y_raw, K)

RefFreeCellMix_wrapper <- function(Y, K){
outY = myRefFreeCellMix(Y,
mu0=myRefFreeCellMixInitialize(Y,
K = K))
Prop0 = outY$Omega
return(Prop0)

}

outT <- csDeconv(Y_raw, K,
FUN = RefFreeCellMix_wrapper)

csTest Testing differential signals for specified phenotype and cell type(s).

Description

This function conducts statistical tests for specified phenotype and cell type(s).

Usage

csTest(fitted_model, coef = NULL, cell_type = NULL,
contrast_matrix = NULL, var_shrinkage = TRUE,
verbose = TRUE, sort = TRUE)

Arguments

fitted_model The output from fitModel() function.
coef A phenotype name, e.g. "disease", or a vector of contrast terms, e.g. c("disease",

"case", "control").
cell_type A cell type name, e.g. "celltype1", or "neuron". If cell_type is NULL or speci-

fied as "ALL", compound effect of coef in all cell types will be tested.
contrast_matrix

If contrast_matrix is specified, coef and cell_type will be ignored! A matrix
(or a vector) to specify contrast, e.g., cmat <- matrix(0, 2, 6); cmat[1,3] <- 1:
cmat[2,4] <- 1 is to test whether the 3rd parameter and 4th parameter are zero
simultaneously i.e. beta3 = beta4 = 0.

var_shrinkage Whether to apply shrinkage on estimated MSE or not. Applying shrinkage helps
remove extremely small variance estimation and stablize statistics.

verbose A boolean parameter. Testing information will be printed if verbose = TRUE.
sort A boolean parameter. The output results will be sorted by p value if sort =

TRUE.

csTest 11

Value

A matrix including the results from testing the phenotype in specified cell type(s).

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

Examples

N <- 300 # simulation a dataset with 300 samples
K <- 3 # 3 cell types
P <- 500 # 500 features

simulate proportion matrix
Prop <- matrix(runif(N*K, 10,60), ncol=K)
Prop <- sweep(Prop, 1, rowSums(Prop), FUN="/")
colnames(Prop) <- c("Neuron", "Astrocyte", "Microglia")

simulate phenotype names
design <- data.frame(disease=factor(sample(0:1,

size = N,replace=TRUE)),
age=round(runif(N, 30,50)),
race=factor(sample(1:3, size = N,replace=TRUE)))

Y <- matrix(rnorm(N*P, N, P), ncol = N)

generate design matrix and fit model
Design_out <- makeDesign(design, Prop)
fitted_model <- fitModel(Design_out, Y)

check the names of cell types and phenotypes
fitted_model$all_cell_types
fitted_model$all_coefs

detect age effect in neuron
test <- csTest(fitted_model, coef = "age",
cell_type = "Neuron", contrast_matrix = NULL)

coef can be specified in different ways:
jointly test a phenotype:
test <- csTest(fitted_model, coef = "age",
cell_type = "joint", contrast_matrix = NULL)

if I do not specify cell_type
test <- csTest(fitted_model, coef = "age",
cell_type = NULL, contrast_matrix = NULL)
this is exactly the same as
test <- csTest(fitted_model, coef = "age",
contrast_matrix = NULL)

other examples
test <- csTest(fitted_model, coef = "race",

12 DEVarSelect

cell_type = "Astrocyte", contrast_matrix = NULL)
test <- csTest(fitted_model, coef = "age",
cell_type = "Microglia", contrast_matrix = NULL)

specify contrast levels
test <- csTest(fitted_model, coef = c("race", 3, 2),
cell_type = "Neuron", contrast_matrix = NULL)
specify contrast levels in all cell types
test <- csTest(fitted_model, coef = c("race", 3, 2),
cell_type = "joint", contrast_matrix = NULL)

csTest can tolerate different ways of specifying contrast level
note race=1 is used as reference when fitting model
we can here specify race=2 as reference
test <- csTest(fitted_model, coef = c("race", 1, 2),
cell_type = "Neuron", contrast_matrix = NULL)
get exactly the same results as
test <- csTest(fitted_model, coef = c("race", 2, 1),
cell_type = "Neuron", contrast_matrix = NULL)

specify a contrast matrix:
cmatrix = rep(0,15)
cmatrix[c(4,5)] = c(1,-1)
test <- csTest(fitted_model, coef = NULL,
cell_type = NULL, contrast_matrix = cmatrix)
specific a contrast matrix with two rows:
cmatrix = matrix(rep(0,30),2,15)
cmatrix[1,4] = 1
cmatrix[2,5] = 1
test <- csTest(fitted_model, coef = NULL,
contrast_matrix = cmatrix)

DEVarSelect Feature selection for reference-free deconvolution using cross-cell
type differential analysis

Description

This function selects cross-cell type differential features for reference-free deconvolution.

Usage

DEVarSelect(Y_raw, Prop0, nMarker, bound_negative)

Arguments

Y_raw A data matrix containing P features and N samples; or a SummarizedExperiment
object.

Prop0 A N by K proportion matrix with K as number of cell types.

nMarker Number of markers selected.

bound_negative Whether to bound all negative parameter estimators to zero.

findRefinx 13

Value

Selected markers using cross-cell type differential analysis.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

Examples

Y_raw <- matrix(runif(5000*20, 0, 1), 5000, 20)
tmp <- matrix(runif(20*4), 20, 4)
Prop0 <- sweep(tmp, 1, rowSums(tmp), "/")
varlist <- DEVarSelect(Y_raw, Prop0,

nMarker=1000,
bound_negative=FALSE)

findRefinx findRefinx

Description

Find index for marker genes with largest coefficient of variation based on raw data.

Usage

findRefinx(rawdata, nmarker=1000, sortBy = "var")

Arguments

rawdata A data matrix with rows representing features and columns represeting samples;
or a SummarizedExperiment object.

nmarker Desired number of markers after selection. Default is 1000.

sortBy Desired method to select features. "var" represents selecting by largest variance.
"cv" represents selecting by largest coefficients of variation. Default is "var".

Value

A vector of index for the selected markers.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

14 fitModel

Examples

Y_raw <- matrix(runif(5000*20, 0, 1), 5000, 20)
idx <- findRefinx(Y_raw, nmarker=500)
idx2 <- findRefinx(Y_raw, nmarker=500, sortBy = "cv")

fitModel Fit model with proportions and phenotypes.

Description

This function receives design matrix from makeDesign() and fits the model including all cell types
and phenotypes.

Usage

fitModel(Design_out, Y)

Arguments

Design_out The output from function makeDesign().

Y A G*N matrix, G is the number of features, N is the number of subjects; or a
SummarizedExperiment object.

Value

Design_out The input Design_out object.

N Number of samples from matrix Y.

coefs Estimated coefficients (beta) in the model.

coefs_var Estimated variance of the coefficients (beta variance) in the model.

Y Observation Y matrix.

Ypred Predicted Y from the fitted model.

all_coefs The names of all phenotypes.

all_cell_types The names of all cell types.

MSE Estimated mean squared error.

model_names The names of all terms in the fitted model.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

GetPrior 15

Examples

N = 300 # simulation a dataset with 300 samples
K = 3 # 3 cell types
P <- 500 # 500 features

simulate proportion matrix
Prop = matrix(runif(N*K, 10,60), ncol=K)
Prop = sweep(Prop, 1, rowSums(Prop), FUN="/")
colnames(Prop) = c("Neuron", "Astrocyte", "Microglia")
Y <- matrix(rnorm(N*P, N, P), ncol = N)

simulate phenotype names
design <- data.frame(disease=factor(sample(0:1,

size = N,replace=TRUE)),
age=round(runif(N, 30,50)),
race=factor(sample(1:3, size = N,replace=TRUE)))

Design_out <- makeDesign(design, Prop)

fit model
fitted_model <- fitModel(Design_out, Y)

GetPrior Get prior knowledge for supported tissue types

Description

Users can use this function to get priors provided in this package. Users can also directly specify
tisuse type in MDeconv function.

Usage

GetPrior(alpha = NULL, sigma = NULL)

Arguments

alpha A string chosen from "human pbmc","human liver", "human brain", "human
pancreas", "human skin", or a nuemric vector for manually specified alpha.

sigma Keep it as NULL for supported tissues. Otherwise a numeric vector for manual-
lly specified sigma.

Value

alpha_prior Prior knowledge for the mean of proportions.

sigma_prior Prior knowledge for the sigma of proprotions.

Author(s)

Ziyi Li <zli16@mdanderson.org>

16 makeDesign

References

Ziyi Li, Zhenxing Guo, Ying Cheng, Peng Jin, Hao Wu. "Robust partial reference-free cell com-
poisiton estimation from tissue expression profiles."

Examples

GetPrior("human pbmc")
GetPrior("human liver")
GetPrior("human brain")
GetPrior("human skin")
GetPrior("human pancreas")

makeDesign Generate design matrix from input phenotypes and proportions.

Description

This function generate design matrix and make preparations for following fitModel and csTest.

Usage

makeDesign(design, Prop)

Arguments

design A N by P phenotype matrix, with rows as samples and columns as phenotypes
(e.g. age, gender, disease, etc.).

Prop A N by K proportion matrix, with rows as samples and columns as cell types

Value

design_matrix A comprehensive design matrix incorporated phenotype and proportion infor-
mation.

Prop The input proportion matrix.

design The input design/phenotype matrix.

all_coefs The names of all phenotypes.

all_cell_types The names of all cell types.

formula The formula of the tested model, including all phenotypes, cell types and inter-
action terms.

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhijin Wu, Peng Jin, Hao Wu. "Dissecting differential signals in high-throughput data from
complex tissues."

MDeconv 17

Examples

N = 300 # simulation a dataset with 300 samples
K = 3 # 3 cell types

simulate proportion matrix
Prop = matrix(runif(N*K, 10,60), ncol=K)
Prop = sweep(Prop, 1, rowSums(Prop), FUN="/")
colnames(Prop) = c("Neuron", "Astrocyte", "Microglia")

simulate phenotype names
design <- data.frame(disease=factor(sample(0:1, size = N,replace=TRUE)),

age=round(runif(N, 30,50)),
race=factor(sample(1:3, size = N,replace=TRUE)))

Design_out <- makeDesign(design, Prop)

MDeconv Estimate cell compoisitons via partial reference-free deconvolution.

Description

This function is the wrapper for TOAST/-P (partial reference-free deconvolution without prior) and
TOAST/+P (with prior). It guides cell compoisition estimation through extra biological information,
including cell type specific markers and prior knowledge of compoisitons.

Usage

MDeconv(Ymat, SelMarker,
alpha = NULL, sigma = NULL,
epsilon = 0.001, maxIter = 1000,
verbose = TRUE)

Arguments

Ymat A gene expression data matrix from complex tissues. Rows represent genes and
columns represent samples. Row names (e.g. gene symbol or ID) are needed.
There is no need to filter data matrix by marker genes.

SelMarker A list variable with each element includes cell type-specific markers for this cell
type. The marker list can be selected from pure cell type profiles or single cell
data using ChooseMarker(). It can also be easily created manually. Please see
details section below and example for more information.

alpha A vector including the prior mean for all cell types.

sigma A vector including the prior standard deviation for all cell types.

epsilon A numeric variable to control the level of convergence. With a large epsilon,
it converges quickly and the algorithm may not converge well. With a small
epsilon, it converges slower and the algorithm may converge "too much". The
default value is 1e-3, which we find is a reasonable threshold.

maxIter Number of maximum iterations.

verbose A boolean variable of whether to output messages.

18 MDeconv

Details

More about SelMarker: in addition to selecting markers using ChooseMarker(), we can manually
specific marker list. For example, if we know there are two cell type-specific markers for cell
type A "Gene1" and "Gene2", and two cell type-specific markers for cell type B "Gene3" and
"Gene4", we can create marker list by SelMarker = list(CellA = c("Gene1","Gene2"), CellB =
c("Gene3","Gene4")).

One thing to note is that, the genes in marker list should have matches in row names of Ymat. If
not, the unmatched markers will be removed duing analysis.

Value

A list including

H Estimated proportion matrix, rows for cell types and columns for samples.

W Estimated pure cell type profile matrix, rows for genes and columns for cell
types

Author(s)

Ziyi Li <zli16@mdanderson.org>

References

Ziyi Li, Zhenxing Guo, Ying Cheng, Peng Jin, Hao Wu. "Robust partial reference-free cell com-
poisiton estimation from tissue expression profiles."

Examples

simulate mixed data from complex tissue
without prior
Wmat <- matrix(abs(rnorm(60*3, 4, 4)), 60, 3)
SelMarker <- list(CellA = 1:20,

CellB = 21:40,
CellC = 41:60)

for(i in 1:3) {
Wmat[SelMarker[[i]], i] <- abs(rnorm(20, 50, 10))

}
Hmat <- matrix(runif(3*25), 3, 25)
Hmat <- sweep(Hmat, 2, colSums(Hmat), "/")
Ymat <- Wmat %*% Hmat + abs(rnorm(60*25))
rownames(Ymat) <- 1:60

deconvolution with TOAST/-P (TOAST without prior)
res <- MDeconv(Ymat, SelMarker, verbose = FALSE)
print(dim(Ymat))
cor(t(res$H), t(Hmat))

supporse we observe the proportions
for the same tissue from another study
alpha_prior <- rep(0.33, 3)
sigma_prior <- rep(1, 3)

deconvolution with TOAST/+P (TOAST with prior)
res2 <- MDeconv(Ymat, SelMarker,

alpha = alpha_prior, sigma = sigma_prior,

myprojectMix 19

verbose = FALSE)
cor(t(res2$H), t(Hmat))

myprojectMix Replicate the function myprojectMix() from RefFreeEWAS package

Description

Replicate the function myprojectMix() from RefFreeEWAS package (https://cran.r-project.org/web/packages/RefFreeEWAS/index.html)
as that package is not in CRAN anymore

Usage

myprojectMix(Y, Xmat, nonnegative=TRUE, sumLessThanOne=TRUE, lessThanOne=!sumLessThanOne)

Arguments

Y Matrix (m CpGs x n Subjects) of DNA methylation beta values

Xmat Matrix (m CpGs x K cell types) of cell-type specific methylomes

nonnegative All coefficients >=0?

sumLessThanOne Coefficient rows should sum to less than one?

lessThanOne Every value should be less than one (but possibly sum to value greater than one)?

Details

Function for projecting methylation values (Y) onto space of methyomes (Xmat), with various
constraints. This is the reference-based method described in Houseman et al. (2012) and also
appearing in the minfi package.

Value

Projection coefficients resulting from constrained projection

myRefFreeCellMix Replicate the function RefFreeCellMix() from RefFreeEWAS package

Description

Replicate the function RefFreeCellMix() from RefFreeEWAS package (https://cran.r-project.org/web/packages/RefFreeEWAS/index.html)
as that package is not in CRAN anymore

Usage

myRefFreeCellMix(Y,mu0=NULL,K=NULL,iters=10,Yfinal=NULL,verbose=TRUE)

20 myRefFreeCellMixInitialize

Arguments

Y Matrix (m CpGs x n Subjects) of DNA methylation beta values

mu0 Matrix (m CpGs x K cell types) of *initial* cell-type specific methylomes

K Number of cell types (ignored if mu0 is provided)

iters Number of iterations to execute

Yfinal Matrix (m* CpGs x n Subjects) of DNA methylation beta values on which to
base final methylomes

verbose Report summary of errors after each iteration?

Details

Reference-free decomposition of DNA methylation matrix into cell-type distributions and cell-type
methylomes, Y = Mu Omega^T. Either an initial estimate of Mu must be provided, or else the
number of cell types K, in which case RefFreeCellMixInitialize will be used to initialize. Note that
the decomposition will be based on Y, but Yfinal (=Y by default) will be used to determine the final
value of Mu based on the last iterated value of Omega.

Value

Object of S3 class RefFreeCellMix, containing the last iteration of Mu and Omega.

Author(s)

E. Andres Houseman

References

Houseman, E. Andres, Kile, Molly L., Christiani, David C., et al. Reference-free deconvolution of
DNA methylation data and mediation by cell composition effects. BMC bioinformatics, 2016, vol.
17, no 1, p. 259.

myRefFreeCellMixInitialize

Replicate the function RefFreeCellMixInitialize() from RefFreeEWAS
package

Description

Replicate the function RefFreeCellMixInitialize() from RefFreeEWAS package (https://cran.r-project.org/web/packages/RefFreeEWAS/index.html)
as that package is not in CRAN anymore

Usage

myRefFreeCellMixInitialize(Y,K=2,Y.Distance=NULL, Y.Cluster=NULL,
largeOK=FALSE, dist.method = "euclidean", ...)

plotCorr 21

Arguments

Y Matrix (m CpGs x n Subjects) of DNA methylation beta values

K Number of cell types

Y.Distance Distance matrix (object of class "dist") to use for clustering.

Y.Cluster Hiearchical clustering object (from hclust function)

largeOK OK to calculate distance matrix for large number of subjects? (See details.)

dist.method Method for calculating distance matrix

... Additional parameters for hclust function

Details

Initializes the methylome matrix "Mu" for RefFreeCellMix by computing the mean methylation
(from Y) over K clusters of Y, determined by the Y.Cluster object. If Y.Cluster object does not
exist, it will be created from Y.Distance (using additional clustering parameters if supplied). If
Y.Distance does not exist, it will be created from t(Y). As a protection against attempting to fit a
very large distance matrix, the program will stop if the number of columns of Y is > 2500, unless
largeOK is explicitly set to TRUE.

Value

An m x K matrix of mean methylation values.

Author(s)

E. Andres Houseman

plotCorr Show DE/DM state correlation between cell types

Description

This function generates -log10 transformed p-values for each pair of cell types and calculate cor-
responding Pearson correlation and odds ratio - a modification of function ’ggpairs’ in package
’GGally’.

Usage

plotCorr(pval, de.state=NULL, pval.thres=NULL, fdr.thres=NULL, p.size = 0.2,
p.color = grDevices::adjustcolor("black", alpha.f = 0.2),
fig.margin = c(1,1,1,1),
fig.margin.unit = 'in', line.type = 'dashed', line.color = 'blue')

Arguments

pval matrix of p-values, with rows representing features and columns representing
cell types.

de.state (optional) matrix of DE/DM states (1: DE/DM, 0:non-DE/DM), with rows rep-
resenting features and columns representing cell types.

pval.thres threshold of p-value to define DE/DM, required if de.state not provided.

22 RA_100samples

fdr.thres threshold of FDR to define DE/DM, required if de.state not provided and FDR
is prefered than p-value.

p.size point size for scatter plot

p.color point color for scatter plot

fig.margin figure margin
fig.margin.unit

unit of figure margin

line.type line type in scatter plot

line.color line color in scater plot

Value

A figure contains scatter plots, Pearson correlaiton and odds ration of -log10 transformed p-values
for each pair of cell types.

Author(s)

Luxiao Chen <luxiao.chen@emory.edu>

Examples

pval.1 <- runif(1000,0,1)
pval.2 <- pval.1 + rnorm(1000,0,0.01)
pval.2[pval.2 < 0] =0
pval.3 <- runif(1000,0,1)

pval.input <- data.frame('cell.1'=pval.1,
'cell.2'=pval.2,
'cell.3'=pval.3)

plotCorr(pval = pval.input, pval.thres = 0.05)

RA_100samples An example dataset for cellular proportion estimation and multiple
factor design

Description

The dataset contains normalized beta valutes for 3000 CpGs from 100 samples (50 Rheumatoid
arthritis patients and 50 controls) and their phenotypes (disease status, age, and gender). The
dataset also contains a sub-setted blood reference matrix for the matched 3000 CpGs. This data
was obtained and processed based on GSE42861.

Usage

data("RA_100samples")

References

Liu Y, Aryee MJ, Padyukov L, Fallin MD et al. Epigenome-wide association data implicate DNA
methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013 Feb;31(2):142-
7. PMID: 23334450

Tsisal 23

Examples

data(RA_100samples)
RA_100samples$Y_raw[1:5,1:5]
head(RA_100samples$Pheno)
head(RA_100samples$Blood_ref)

Tsisal Complete Deconvolution of DNA methylation data based on TOAST
and SISAL

Description

A function to conduct complete reference-free deconvolution on DNA methylation data. If a full
reference or a partial reference panel is provided, this function also automatically annotate the
solved proportions to known cell types.

Usage

Tsisal(Y_raw, K = NULL, knowRef = NULL, possibleCellNumber = 3:15)

Arguments

Y_raw The DNA methylation 450K array data from complex tissues, rows for CpG
sites and columns for samples.

K The number of pure cell types, we allow users to pre-specify or use our method
to estimate.

knowRef The external reference panel for cell type label assignment.

possibleCellNumber

Range of possible number of cell types. Default is 3:15.

Value

estProp Estimated proportions.

selMarker Selected cell type-specific markers.

K Optional number of cell types.

Author(s)

Weiwei Zhang <wwzhangly@163.com>

References

Complete deconvolution of DNA methylation signals from complex tissues: a geometric approach.
Weiwei Zhang, Hao Wu and Ziyi Li.

24 Tsisal

Examples

generate a simulation data
knowRef <- matrix(runif(5000*5), 5000, 5)
colnames(knowRef) <- paste0("CellType", 1:5)
Y_raw <- matrix(runif(5000*20), 5000, 20)
rownames(Y_raw) <- paste0("CpG", 1:5000)
colnames(Y_raw) <- paste0("Sample", 1:20)

Tsisal(Y_raw = Y_raw, K = 5, knowRef = knowRef)

if cell type number is unknown
Tsisal(Y.raw = Y_raw, K = NULL, knowRef = knowRef, possibleCellNumber = 4:10)

Index

∗ compelte deconvolution
Tsisal, 23

∗ datasets
beta_emp, 3
CBS_PBMC_array, 3
RA_100samples, 22

∗ dataset
GetPrior, 15

∗ method
MDeconv, 17

∗ models
assignCellType, 2
ChooseMarker, 7

assignCellType, 2

beta_emp, 3

CBS_PBMC_array, 3
cedar, 4
ChooseMarker, 7
csDeconv, 9
csTest, 10

DEVarSelect, 12

findRefinx, 13
fitModel, 14

GetPrior, 15

makeDesign, 16
MDeconv, 17
myprojectMix, 19
myRefFreeCellMix, 19
myRefFreeCellMixInitialize, 20

plotCorr, 21

RA_100samples, 22

Tsisal, 23

25

	assignCellType
	beta_emp
	CBS_PBMC_array
	cedar
	ChooseMarker
	csDeconv
	csTest
	DEVarSelect
	findRefinx
	fitModel
	GetPrior
	makeDesign
	MDeconv
	myprojectMix
	myRefFreeCellMix
	myRefFreeCellMixInitialize
	plotCorr
	RA_100samples
	Tsisal
	Index

