
Package ‘Repitools’
November 21, 2024

Version 1.52.0

Date 2021-11-21

Title Epigenomic tools

Author Mark Robinson <mark.robinson@mls.uzh.ch>, Dario Strbenac

<dario.strbenac@sydney.edu.au>, Aaron Statham

<a.statham@garvan.org.au>, Andrea Riebler

<andrea.riebler@math.ntnu.no>

Maintainer Mark Robinson <mark.robinson@mls.uzh.ch>

LazyLoad Yes

Depends R (>= 3.5.0), methods, BiocGenerics (>= 0.8.0)

Imports parallel, S4Vectors (>= 0.17.25), IRanges (>= 2.13.12),
GenomeInfoDb, GenomicRanges, Biostrings, Rsamtools,
GenomicAlignments, rtracklayer, BSgenome (>= 1.47.3), gplots,
grid, MASS, gsmoothr, edgeR (>= 3.4.0), DNAcopy, Rsolnp,
cluster

Suggests ShortRead, BSgenome.Hsapiens.UCSC.hg18

Description Tools for the analysis of enrichment-based epigenomic
data. Features include summarization and visualization of
epigenomic data across promoters according to gene expression
context, finding regions of differential methylation/binding,
BayMeth for quantifying methylation etc.

Collate classes.R multiHeatmap.R BAM2GRanges.R FastQC-class.R
plotClusters.R annoDF2GR.R GCbiasPlots.R featureScores.R
profilePlots.R findClusters.R mergeReplicates.R
processNimblegenArrays.R regionStats.R cpgDensityPlot.R
featureBlocks.R getProbePositionsDf.R genomeBlocks.R
mappabilityCalc.R ChromaBlocks.R writeWig.R abcdDNA.R
makeWindowLookup.R sequenceCalc.R genQC.R annoGR2DF.R
gcContentCalc.R GCadjustCopy.R enrichmentPlot.R cpgBoxplots.R
utils.R absoluteCN.R annotationLookup.R cpgDensityCalc.R
blocksStats.R binPlots.R chromosomeCNplots.R checkProbes.R
relativeCN.R enrichmentCalc.R clusterPlots.R summarizeScores.R
determineOffset.R empBayes.R methylEst.R hyper.R maskOut.R

License LGPL (>= 2)

biocViews DNAMethylation, GeneExpression, MethylSeq

1

2 Contents

git_url https://git.bioconductor.org/packages/Repitools

git_branch RELEASE_3_20

git_last_commit 712f7a5

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-11-20

Contents
abcdDNA . 3
absoluteCN . 4
AdjustedCopyEstimate . 6
AffymetrixCdfFile . 6
AffymetrixCelSet . 7
annoDF2GR . 7
annoGR2DF . 8
annotationBlocksCounts . 9
annotationBlocksLookup . 10
annotationCounts . 11
annotationLookup . 12
BAM2GenomicRanges . 13
BayMethList . 14
binPlots . 16
blocksStats . 17
checkProbes . 19
chr21genes . 20
ChromaBlocks . 20
ChromaResults-class . 22
chromosomeCNplots . 22
ClusteredScoresList . 23
clusterPlots . 24
CopyEstimate . 27
cpgBoxplots . 27
cpgDensityCalc . 28
cpgDensityPlot . 29
determineOffset . 30
empBayes . 31
enrichmentCalc . 33
enrichmentPlot . 34
expr . 35
FastQC-class . 35
featureBlocks . 36
featureScores . 37
findClusters . 39
GCadjustCopy . 41
GCAdjustParams . 42
GCbiasPlots . 43
gcContentCalc . 44
genomeBlocks . 45
genQC . 46

abcdDNA 3

getProbePositionsDf . 47
getSampleOffsets . 47
hcRegions . 48
hyperg2F1_vec . 49
loadPairFile . 50
loadSampleDirectory . 51
makeWindowLookupTable . 52
mappabilityCalc . 53
MappabilitySource . 54
maskOut . 55
mergeReplicates . 56
methylEst . 57
multiHeatmap . 58
plotClusters . 60
plotQdnaByCN . 61
processNDF . 62
profilePlots . 63
QdnaData . 64
regionStats . 65
relativeCN . 66
samplesList . 68
ScoresList . 68
sequenceCalc . 69
setCNVOffsets . 70
summarizeScores . 70
writeWig . 71

Index 73

abcdDNA A wrapper for fitting the offset-adjusted ABCD-DNA GLM

Description

This function performs differential analyses, given a QdnaData object with the sample-specific off-
sets already calculated (i.e. call getSampleOffsets before calling abcdDNA), a coefficient (or set
of coefficients) to test and dispersion(s). In essence, the function is a wrapper for constructing the
offset matrix, fitting the generalized linear model and performing a likelihood ratio test.

Usage

abcdDNA(obj, coef = ncol(obj$design), dispersion = NULL)

Arguments

obj a QdnaData object

coef coefficient (or coefficients) of the design matrix to test

dispersion estimate(s) of dispersion to use for negative binomial testing

4 absoluteCN

Details

This function is simply a wrapper for taking the details in an QdnaData object and perform the
differential analyses, adjusting for copy number if specified.

Value

a DGEGLM (see the edgeR package) containing the results of the differential comparison

Author(s)

Mark Robinson

References

http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/ABCD-DNA.html

See Also

QdnaData,

Examples

library(Repitools)
qd <- QdnaData(counts=counts, regions=gb, design=design,
cnv.offsets=cn, neutral=(regs=="L=4 P=2"))
qd <- getSampleOffsets(qd,ref=1)
plotQdnaByCN(qd,cnv.group=regs,idx.ref=3,idx.sam=2)
f <- abcdDNA(qd, dispersion=.05, coef=2)
topTags(f)

absoluteCN Calculate and Segment Absolute Copy Number from Sequencing
Counts

Description

This function uses the GCadjustCopy function to convert a matrix of count data into absolute copy
number estimates, then it segments them, and reports the copy number of either the input regions
or user-defined regions of interest.

Usage

S4 method for signature 'data.frame,matrix,GCAdjustParams'
absoluteCN(input.windows, input.counts, gc.params, ...)
S4 method for signature 'GRanges,matrix,GCAdjustParams'

absoluteCN(input.windows, input.counts, gc.params,
segment.sqrt = TRUE, ..., verbose = TRUE)

absoluteCN 5

Arguments

input.windows A data.frame with (at least) columns chr, start, and end, or a GRanges ob-
ject.

input.counts A matrix of counts. Rows are genomic windows and columns are samples.

gc.params A GCAdjustParams object, holding parameters related to mappability and GC
content correction of read counts.

segment.sqrt Whether to square root the absolute copy number estimates before running the
segmentation.

... For the data.frame method; the verbose variable and any additional parame-
ters to pass to the segment function. For the GRanges method; additional pa-
rameters for the segmentation.

verbose Whether to print the progess of processing.

Details

For details of the absolute copy number estimation step, see the documentation for GCadjustCopy.

For details of the segmentation, see segment documentation. By default, no weights are used.

Value

A CopyEstimate object. If regions was not provided, it describes the input windows, otherwise it
describes the windows specified by regions.

Author(s)

Dario Strbenac

Examples

Not run:
library(BSgenome.Hsapiens.UCSC.hg18)
library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
load("inputsReads.RData")
windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),

width = 20000)
counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)

gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
min.mappability = 50, n.bins = 10, min.bin.size = 10,
poly.degree = 4, ploidy = c(2, 4))

abs.cn <- absoluteCN(input.windows = windows, input.counts = counts, gc.params = gc.par)

End(Not run)

6 AffymetrixCdfFile

AdjustedCopyEstimate Container for results of GC adjusted copy number estimation.

Description

Contains the genomic coordinates of regions, the raw counts before GC adjustment, the GC content
and mappability of each region, and the polynomial model fit, and the GC-adjusted copy number
estimates.

Constructor

AdjustedCopyEstimate(ploidy, windows, mappability, gc, unadj.CN, models, adj.CN) Cre-
ates a AdjustedCopyEstimate object.

ploidy Sets of chromosomes in each sample.
windows A GRanges object.
mappability A numeric vector of mappability. Elements between 0 and 1.
gc A numeric vector of GC content Elements between 0 and 1.
unadj.CN A matrix of estimated copy numbers after mappability adjustment, but before GC

content adjustment, if slot type is "absolute". Otherwise, fold changes.
models The polynomial models that were fit to the counts.
adj.CN A matrix of estimated copy numbers after mappability adjustment and GC content

adjustment, if slot type is "absolute". Otherwise, a matrix of fold changes, based on
GC adjusted absolute copy estimates.

Note that mappability and gc become metadata columns of windows when the object is
created.

Superclass

This class inherits from CopyEstimate.

Additional Slots

These are added to by absoluteCN or relativeCN

A GRangesList of copy number segmentations for each sample.

unadj.CN.segadj.CN.seg A GRangesList of copy number segmentations for each sample, using GC
adjusted data.

type A flag that contains if the copy number data is absolute or relative.

AffymetrixCdfFile Placeholder For AffymetrixCdfFile Documentation

Description

The documentation is available by typing ?aroma.affymetrix::AffymetrixCdfFile, but to avoid a
check warning in the Repitools package, this help file is present.

AffymetrixCelSet 7

AffymetrixCelSet Placeholder For AffymetrixCelSet Documentation

Description

The documentation is available by typing ?aroma.affymetrix::AffymetrixCelSet, but to avoid a
check warning in the Repitools package, this help file is present.

annoDF2GR Convert a data.frame to a GRanges.

Description

Checks that the data.frame has the required columns, chr, start, end, then creates a GRanges,
keeping all of the additional columns.

Usage

S4 method for signature 'data.frame'
annoDF2GR(anno)

Arguments

anno An data.frame, describing some genomic features.

Details

Extra columns are added to the elementMetadata of the GRanges object.

Value

A GRanges of the annotation.

Author(s)

Dario Strbenac

Examples

df <- data.frame(chr = c("chr1", "chr3", "chr7", "chr22"),
start = seq(1000, 4000, 1000),
end = seq(1500, 4500, 1000),
t = c(3.11, 0.93, 2.28, -0.18),
gc = c("High", "High", "Low", "High"))

annoDF2GR(df)

8 annoGR2DF

annoGR2DF Convert an annotated GRanges to a data.frame.

Description

Converting a GRanges that might be annotated with some kind of results to a data.frame is useful,
because it allows easier writing to file and viewing in other programs, like a spreadsheet program.

Usage

S4 method for signature 'GRanges'
annoGR2DF(anno)

Arguments

anno A GRanges, describing some genomic features.

Details

The column name seqnames is changed to chr, and if all the strands are *, then the strand column
is dropped.

Value

A data.frame of the annotation.

Author(s)

Dario Strbenac

Examples

require(GenomicRanges)
chrs <- c("chr1", "chr3", "chr7", "chr22")
starts <- seq(1000, 4000, 1000)
ends <- seq(1500, 4500, 1000)
t <- c(3.11, 0.93, 2.28, -0.18)
gc <- c("High", "High", "Low", "High")
gr <- GRanges(chrs, IRanges(starts, ends), strand = '*', t, gc)

annoGR2DF(gr)

annotationBlocksCounts 9

annotationBlocksCounts

Counts the number of sequencing reads within supplied genomic
blocks.

Description

Counts reads inside blocks.

Usage

S4 method for signature 'ANY,data.frame'
annotationBlocksCounts(x, anno, ...)
S4 method for signature 'character,GRanges'

annotationBlocksCounts(x, anno, ...)
S4 method for signature 'GRanges,GRanges'

annotationBlocksCounts(x, anno, seq.len = NULL, verbose = TRUE)
S4 method for signature 'GRangesList,GRanges'

annotationBlocksCounts(x, anno, ...)

Arguments

x A character vector of BAM paths, a GRangesList, or GRanges object.

anno A set of genomic features to make windows around a reference point of theirs.
Either a data.frame with (at least) colums chr, start, and end, or a GRanges
object.

seq.len If sequencing reads need to be extended, the fragment size to be used. Default:
NULL (no extension).

verbose Whether to print progress. Default: TRUE.

... Parameters described above, that are not used in the top-level error-checking
stage, but are passed further into a private function that uses them in its process-
ing.

Value

A matrix of counts is returned, one column per sample and one row per row of genomic features
supplied.

Author(s)

Aaron Statham

See Also

annotationCounts, genomeBlocks

10 annotationBlocksLookup

Examples

require(GenomicRanges)
reads <- GRanges(seqnames = rep("chr1", 5),

IRanges(c(3309, 4756, 4801, 4804, 5392), width = 36),
strand = c('+', '-', '-', '+', '+'))

genes <- GRanges("chr1", IRanges(5000, 7000), strand = '+')
annotationBlocksCounts(reads, genes, 300)

annotationBlocksLookup

Forms a mapping between probe locations and chromosomal blocks
(regions).

Description

Starting from a table of genome locations for probes, and a table of regions of interest, this procedure
forms a list structure that contains the indices to map from one to the other.

Usage

S4 method for signature 'data.frame,data.frame'
annotationBlocksLookup(x, anno, ...)
S4 method for signature 'data.frame,GRanges'

annotationBlocksLookup(x, anno, verbose = TRUE)

Arguments

x probe genomic locations, a data.frame with required elements chr, position,
and optionally index

anno a data.frame with required elements chr, start, end, strand and optional
element name. Also may be a GRanges with optional elementMetadata column
name.

verbose Whether to print progress to screen.

... Represents the verbose parameter, when the data.frame,data.frame method
is called.

Details

Strandedness of probes is ignored, even if it is given.

If x has no index column, then the probes are given indices from 1 to the number of probes, in the
order that they appear in the data.frame or GRanges object.

Value

A list with elements

indexes a list for each gene in y, giving a vector of indices to the probe data.

offsets a list for each gebe in y, giving a vector (corresponding to indexes) of offsets
relative to the start of the block.

annotationCounts 11

Author(s)

Aaron Statham, Mark Robinson

See Also

annotationLookup which simplifies annotation lookups for constant sized regions

Examples

create example set of probes and gene start sites
probeTab <- data.frame(position=seq(1000,3000,by=200), chr="chrX", strand="+")
genes <- data.frame(chr="chrX", start=c(2100,2200), end=c(2500, 2400), strand=c("+","-"))
rownames(genes) <- paste("gene",1:2,sep="")

Call annotationLookup() and look at output
annotationBlocksLookup(probeTab, genes)

annotationCounts Counts the number of sequencing reads surrounding supplied annota-
tions

Description

Counts are made in windows with boundaries fixed distances either side of a reference point.

Usage

ANY,data.frame method
annotationCounts(x, anno, ...)
ANY,GRanges method
annotationCounts(x, anno, up, down, ...)

Arguments

x: A character vector of BAM paths, GRangesList, or GRanges object.

anno: A set of genomic features to make windows around a reference point of theirs. Either a
data.frame with (at least) colums chr, start, and end, or a GRanges object.

up: The number of bases upstream to look.

down: The number of bases downstream to look.

seq.len: If sequencing reads need to be extended, the fragment size to be used. Default: NULL (no
extension).

verbose: Whether to print progress. Default: TRUE.

...: Parameters described above, that are not used in the function called, but are passed into annota-
tionBlocksCounts, that uses them in its processing.

Details

If the genomic features annotation contains all unstranded features, the up and down distances
refer to how far towards the start of a chromosome, and how far towards the end to make the
counting window boundaries. If the annotation is all stranded, then the up and down distances
are relative to the TSS of the features.

12 annotationLookup

Value

A matrix of counts is returned, one column per sample and one row per row of genomic
features supplied.

Author(s)

Aaron Statham

See Also

annotationBlocksCounts, genomeBlocks

Examples

require(GenomicRanges)
reads <- GRanges(seqnames = rep("chr1", 5),

IRanges(c(3309, 4756, 4801, 4804, 5392), width = 36),
strand = c('+', '-', '-', '+', '+'))

genes <- GRanges("chr1", IRanges(5000, 7000), strand = '+')

annotationCounts(reads, genes, 500, 500, 300)

annotationLookup Forms a mapping between probes on a tiling array and windows sur-
rounding the TSSs of genes.

Description

Starting from genome locations for probes and a locations for a set of genes, this procedure forms a
list structure that contains the indices to map from one to the other.

Usage

The data.frame,data.frame method:
annotationLookup(x, anno, ...)
The data.frame,GRanges method:
annotationLookup(x, anno, up, down, ...)

Arguments

x: Probe genomic locations, a data.frame with required elements chr, position, and optionally
index

anno: a data.frame with required elements chr, start, end, strand and optional element name.
Also may be a GRanges with optional elementMetadata column name.

up: The number of bases upstream to look.

down: The number of bases downstream to look.

verbose: Whether to print progress to screen. Default: TRUE

...: Parameters described above, that are not used in the function called, but are passed further into
annotationBlocksLookup, which uses them in its processing.

BAM2GenomicRanges 13

Details

This function is a wrapper for the generic function annotationBlocksLookup which can
handle annotations of varying sizes. annotationLookup is appropriate where you wish to
map probes that are within a fixed distance of points of annotation e.g gene transcription start
sites. Even if strand information is given for probes, it is ignored.
If x has no index column, then the probes are given indices from 1 to the number of probes, in
the order that they appear in the data.frame or GRanges object.
It is an error for the gene annotation to have unstranded features.

Value

A list with elements

a list for each gene in y, giving a vector of indices to the probe data.

indexesoffsets a list for each gebe in y, giving a vector (corresponding to indexes) of offsets relative
to the genes’ TSSs for each probe that mapped that that gene.

Author(s)

Aaron Statham, Mark Robinson

See Also

annotationBlocksLookup, makeWindowLookupTable

Examples

create example set of probes and gene start sites
probes <- data.frame(position=seq(1000, 3000, by = 200), chr = "chrX", strand = '-')
genes <- data.frame(chr = "chrX", start=c(2100, 1000), end = c(3000, 2200),

strand=c("+","-"))
rownames(genes) <- paste("gene", 1:2, sep = '')

Call annotationLookup() and look at output
annotationLookup(probes, genes, 500, 500)

BAM2GenomicRanges Read in a (list of) BAM file(s) into a GRanges(List) object.

Description

A wrapper script for coverting the contents of BAM files for use with GenomicRanges classes.

Usage

S4 method for signature 'character'
BAM2GRanges(path, what = character(),

flag = scanBamFlag(isUnmappedQuery = FALSE, isDuplicate = FALSE),
verbose = TRUE)

S4 method for signature 'character'
BAM2GRangesList(paths, what = character(),

flag = scanBamFlag(isUnmappedQuery = FALSE, isDuplicate = FALSE),
verbose = TRUE)

14 BayMethList

Arguments

path A character vector of length 1. The path of the BAM file.

paths A character vector of possibly any length. The paths of the BAM files.

what What optional attributes of a read to retain. See scanBam and the value section.

flag What kinds of reads to retain. See ScanBamParam and the flag argument.

verbose Whether to print the progess of processing.

Value

For the single pathname method; a GRanges object. For the multiple pathnames method; a GRanges-
List object.

Author(s)

Dario Strbenac

Examples

tiny.BAM <- system.file("extdata", "ex1.bam", package = "Rsamtools")
if(length(tiny.BAM) > 0)

print(BAM2GRanges(tiny.BAM))

BayMethList Class "BayMethList"

Description

This S4 class captures the genomic windows together with the number of read counts obtained by
affinity-enrichment sequencing experiments for a fully methylated control and one or more samples
of interest. Furthermore CpG-density is stored.

Constructor

Creates a BayMethList object:

BayMethList(windows, control, sampleInterest, cpgDens, f=matrix(), priorTab=list(),
methEst=list(), maskEmpBayes=logical())

windows A GRanges object.
control A matrix of read counts obtained by an affinity enrichment sequencing experiment

for the fully methylated (SssI) treated sample. The number of rows must be equal to
length(windows). Each column contains the counts of one sample. The number of
columns must be either one or equal to the number of columns of sampleInterest.

sampleInterest A matrix of read counts obtained by an affinity enrichment sequencing ex-
periment for the samples of interest. The number of rows must be equal to length(windows).
Each column contains the counts of one sample.

cpgDens A numeric vector containing the CpG density for windows. The length must be
equal to length(windows)

fOffset A matrix where each column contains the normalizing offsets for one sample. The
number of rows must be either equal to one or the number of windows.

BayMethList 15

priorTab A list containing for each sample of interest the prior parameters as determined by
empBayes.

methEst A list containing the methylation estimates as determined by methylEst.
maskEmpBayes A logical vector indicating which bins should be masked out in the empirical

Bayes analysis. TRUE indicates to neglect the bin in the empirical Bayes approach.

Methods

x[i] signature(x = "BayMethList"): Creates a BayMethList object, keeping only the i entries.

length signature(x= "BayMethList"): gets the number of genomic regions included.

control<- signature(x = "BayMethList"): replace the control slot

control signature(object = "BayMethList"): extract the control matrix slot.

cpgDens<- signature(x = "BayMethList"): replace the cpgDens slot

cpgDens signature(object = "BayMethList"): extract the cpgDens slot.

sampleInterest<- signature(x = "BayMethList"): replace the sampleInterest slot

sampleInterest signature(object = "BayMethList"): extract the sampleInterest matrix slot.

show signature(object = "BayMethList"): show an overview of the object

windows<- signature(x = "BayMethList"): replace the windows slot

windows signature(object = "BayMethList"): extract the windows GRanges slot.

fOffset<- signature(x = "BayMethList"): replace the fOffset slot

fOffset signature(object = "BayMethList"): extract the fOffset slot.

priorTab<- signature(x = "BayMethList"): replace the priorTab slot

priorTab signature(object = "BayMethList"): extract the priorTab slot.

methEst<- signature(x = "BayMethList"): replace the methEst slot

methEst signature(object = "BayMethList"): extract the methEst slot.

maskEmpBayes<- signature(x = "BayMethList"): replace the maskEmpBayes slot

maskEmpBayes signature(object = "BayMethList"): extract the maskEmpBayes slot.

ncontrol signature(object = "BayMethList"): get the number of provided SssI samples.

nsampleInterest signature(object = "BayMethList"): get the number of provided samples of
Interest.

Author(s)

Andrea Riebler and Mark Robinson

See Also

determineOffset, empBayes, methylEst

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18)){
windows <- genomeBlocks(Hsapiens, chrs="chr21", width=100, spacing=100)
cpgdens <- cpgDensityCalc(windows, organism=Hsapiens,

w.function="linear", window=700)
co <- matrix(rnbinom(length(windows), mu=10, size=2), ncol=1)
sI <- matrix(rnbinom(2*length(windows), mu=5, size=2), ncol=2)

16 binPlots

bm <- BayMethList(windows=windows, control=co, sampleInterest=sI,
cpgDens=cpgdens)

cat("Number of genomic regions", length(bm), "\n")
cat("Number of fully methylated control samples:", ncontrol(bm), "\n")
cat("Number of samples of interest:", nsampleInterest(bm), "\n")
bm[2:20]

}

binPlots Create line plots of averaged signal across a promoter

Description

Using a specified ordering of genes, they are split into multiple bins. In each bin, the signal across
is summarized and displayed visually.

Usage

S4 method for signature 'ScoresList'
binPlots(x, summarize = c("mean", "median"), ordering = NULL,
ord.label = NULL, plot.type = c("line", "heatmap", "terrain"), n.bins = 10, cols = NULL,
lwd = 3, lty = 1, same.scale = TRUE, symm.scale = FALSE, verbose = TRUE)

Arguments

x A ScoresList object. See featureScores.

summarize How to summarise the scores for each bin into a single value.

ordering A data.frame of either numeric or factor variables, with the same number of
rows as the annotation used to create x, or a vector of such types.

ord.label Character string that describes what type of data the ordering is. e.g. "log2
expression". Used to label relevant plot axis.

plot.type Style of plot to draw.

n.bins The number of bins to split the features into, before summarisation.

cols A vector of colours to use for the bins. In order from the lowest value bin, to the
highest value bin.

lwd Line width of lines in line plot (either scalar or vector).

lty Line type of line in line plot (either scalar or vector).

same.scale Whether to keep the scale on all plots be the same.

symm.scale Whether the scale on plots is symmetrical around 0.

verbose Whether to print details of processing.

Details

If plotType = "line", a line is plotted for each bin across the promoter.

If plotType = "heatmap", a series of bins are plotted as a heatmap. This can be useful to display a
larger number of bins.

If plotType = "terrain", a series of bins are plotted as a 3D-terrain map. This can be useful to
display a larger number of bins.

blocksStats 17

Value

Either a single- or multiple-panel figure.

Author(s)

Mark Robinson

Examples

data(chr21genes)
data(samplesList) # Loads 'samples.list.subset'.
data(expr) # Loads 'expr.subset'.

fs <- featureScores(samples.list.subset, chr21genes, up = 5000, down = 1000, dist = "base", freq = 1000,
s.width = 500)

fs@scores <- list(tables(fs)[[2]] - tables(fs)[[4]])
names(fs) <- "PC-Norm"

binPlots(fs, ordering = expr.subset, ord.label = "expression", plot.type = "line", n.bins = 4)
binPlots(fs, ordering = expr.subset, ord.label = "expression", plot.type = "heatmap", n.bins = 8)

blocksStats Calculate statistics for regions in the genome

Description

For each region of interest or TSS, this routine interrogates probes or sequence data for either a high
level of absolute signal or a change in signal for some specified contrast of interest. Regions can be
surroundings of TSSs, or can be user-specified regions. The function determines if the start and
end coordinates of anno should be used as regions or as TSSs, if the up and down coordinates are
NULL or are numbers.

Usage

The ANY,data.frame method:
blocksStats{ANY,data.frame}(x, anno, ...)
The ANY,GRanges method:
blocksStats{ANY,GRanges}(x, anno, up = NULL, down = NULL, ...)

Arguments

x: A GRangesList, AffymetrixCelSet, or a data.frame of data. Or a character vector of BAM
paths to the location of the BAM files.

anno: Either a data.frame or a GRanges giving the gene coordinates or regions of interest. If it is
a data.frame, then the column names are (at least) chr, name, start, end. Column strand
is also mandatory, if up and down are NULL.

seq.len: If sequencing reads need to be extended, the fragment size to be used.

p.anno: A data.frame with (at least) columns chr, position, and index. This is an optional
parameter of the AffymetrixCelSet method, because it can be automatically retrieved for
such array data. The parameter is also optional, if mapping is not NULL.

18 blocksStats

mapping: If a mapping with annotationLookup or annotationBlocksLookup has already been
done, it can be passed in, and avoids unnecessary re-conmputing of the mapping list within
blocksStats.

chrs: If p.anno is NULL, and is retrieved from an ACP file, this vector gives the textual names of
the chromosomes.

log2.adj: Whether to take log_2 of array intensities.

design: A design matrix specifying the contrast to compute (i.e. The samples to use and what
differences to take.).

up: The number of bases upstream to consider in calculation of statistics. If not provided, the starts
and ends in anno are used as region boundaries.

down: The number of bases upstream to consider in calculation of statistics. If not provided, the
starts and ends in anno are used as region boundaries.

lib.size: A string that indicates whether to use the total lane count, total count within regions speci-
fied by anno, or normalisation to a reference lane by the negative binomial quantile-to-quantile
method, as the library size for each lane. For total lane count use "lane", for region sums use
"blocks", and for the normalisation use "ref".

robust: Numeric. If it is 0, then a robust linear model is not fitted. If it is greater than 0, a robust
linear model is used, and the number specifies the minimum number of probes a region has to
have, for statistics to be reported for that region.

p.adj: The method used to adjust p-values for multiple testing. Possible values are listed in
p.adjust.

Acutoff: If libSize is "ref", this argument must be provided. Otherwise, it must not. This
parameter is a cutoff on the "A" values to take, before calculating trimmed mean.

verbose: Logical; whether to output commments of the processing.

... Parameters described above, that are not used in the function called, but are passed further into
a private function that uses them in its processing.

Details

For array data, the statstics are either determined by a t-test, or a linear model. For sequencing
data, the two groups are assumed to be from a negative binomial distribution, and an exact test
is used.

Value

A data.frame, with the same number of rows as there are features described by anno, but
with additional columns for the statistics calculated at each feature.

Author(s)

Mark Robinson

See Also

annotationLookup and annotationBlocksLookup

checkProbes 19

Examples

require(GenomicRanges)
intensities <- matrix(c(6.8, 6.5, 6.7, 6.7, 6.9,

8.8, 9.0, 9.1, 8.0, 8.9), ncol = 2)
colnames(intensities) <- c("Normal", "Cancer")
d.matrix <- matrix(c(-1, 1))
colnames(d.matrix) <- "Cancer-Normal"
probe.anno <- data.frame(chr = rep("chr1", 5),

position = c(4000, 5100, 6000, 7000, 8000),
index = 1:5)

anno <- GRanges("chr1", IRanges(7500, 10000), '+', name = "Gene 1")
blocksStats(intensities, anno, 2500, 2500, probe.anno, log2.adj = FALSE, design = d.matrix)

checkProbes Check Probe Specificity for Some Regions

Description

Given a set of gene coordinates, and probe mappings to the genome, a plot is created across every
gene region of how many probes mapped to each position.

Usage

S4 method for signature 'data.frame,data.frame'
checkProbes(regs, probes, up = NULL, down = NULL, ...)
S4 method for signature 'GRanges,GRanges'

checkProbes(regs, probes, up = NULL, down = NULL, ...)

Arguments

regs A data.frame with (at least) columns chr, start, end, strand, and name, or a
GRanges object with an elementMetadata column name. The starts and ends of
regions describe are the windows plotted in.

probes A data.frame describing where the probes mapped to, with (at least) columns
name (identifier of a probe), chr, start, and end, or a GRanges object with an
elementMetadata column name.

up How many bases upstream to plot.

down How many bases downstream to plot.

... Line parameters passed onto matplot.

Details

If up and down are NULL, then the gene is plotted as it is described by its start and end coordinates.

This function produces a number of plots. Sending output to a PDF device is recommended.

Value

A set of plots is created, one for each of the genes. The lines in the plot show where a probe hits
(the x - axis) and how many places in total the probe hits in the genome (y - axis).

20 ChromaBlocks

Author(s)

Dario Strbenac

Examples

p.table <- data.frame(name = c("probeA", "probeB", "probeC", "probeC", "probeC"),
strand = c('+', '-', '+', '-', '-'),

chr = c("chr1", "chr2", "chr1", "chr2", "chr2"),
start = c(20, 276, 101, 101, 151),

end = c(44, 300, 125, 125, 175))
r.table <- data.frame(name = c("gene1", "gene2", "gene3"),

chr = c("chr1", "chr2", "chr2"),
strand = c('+', '-', '+'),
start = c(20, 500, 75),

end = c(200, 800, 400))
pdf("tmp.pdf", height = 6, width = 14)
checkProbes(r.table, p.table, lwd = 4, col = "blue")
dev.off()

chr21genes Positions of Genes on Human Chromosome 21

Description

Annotation of chromosome 21 genes from RefSeq in June 2010.

Usage

chr21genes

Format

A data frame.

Source

UCSC Genome Browser tables.

ChromaBlocks A function to find areas of enrichment in sequencing data

Description

This function discovers regions of enrichment in ChIP-seq data, using the method described in
Hawkins RD. et al 2010 Cell Stem Cell.

Usage

S4 method for signature 'GRangesList,GRangesList'
ChromaBlocks(rs.ip, rs.input, organism, chrs, ipWidth=100, inputWidth=500, preset=NULL, blockWidth=NULL, minBlocks=NULL, extend=NULL, cutoff=NULL, FDR=0.01, nPermutations=5, nCutoffs=20, cutoffQuantile=0.98, verbose=TRUE, seq.len=NULL)

ChromaBlocks 21

Arguments

rs.ip A GRangesList object containing reads from the Immunoprecipited sample. If
multiple lanes are supplied, they are pooled.

rs.input A GRangesList object containing reads from the Input (unenriched) sample. If
multiple lanes are supplied, they are pooled.

organism The BSgenome object

chrs An character or integer vector with the indicies of the chromosomes of the
organism object to analyse

ipWidth Size in basepairs of the windows to use for the IP samples

inputWidth Size in basepairs of the windows to use for the Input samples

preset Either "small", "large" to use cutoffs described in Hawkins et al or NULL (where
blockWidth, minBlocks must be specified)

blockWidth Number of adjacent blocks to consider at once

minBlocks The minimum number of blocks required above cutoff

extend Optional: whether to extend significant blocks until adjacent blocks are less than
this value

cutoff Optional: the cutoff to use to call regions. If left as NULL a cutoff will be chosen
which satisfied the specified FDR

FDR The target False Discovery Rate; If cutoff is not supplied, one will be chosen
to satisfy this value

nPermutations The number of permutations of the data to determine the cutoff at the supplied
FDR

nCutoffs The number of different cutoffs to try to satisfy the FDR, a higher value will give
finer resolution but longer processing time

cutoffQuantile The quantile of the RPKM to use as the maximum cutoff tried; a higher value
will give lower resolution but may be needed if a cutoff satisfying the FDR
cannot be determined with the default value

verbose logical, whether to output commments of the processing

seq.len If sequencing reads need to be extended, the fragment size to be used

Value

A ChromaResults object.

Author(s)

Aaron Statham

See Also

ChromaResults

22 chromosomeCNplots

ChromaResults-class ChromaResults class

Description

The ChromaResults class stores the results of a ChromaBlocks run.

Slots of a ChromaResults object

blocks:GRanges of the blocks used across the genome, with their calculated RPKM regions:IRangesList
of regions determined to be enriched FDRTable:data.frame showing the FDR at each cutoff tested
cutoff:The cutoff used to determine enrichment

Author(s)

Aaron Statham

See Also

ChromaBlocks

chromosomeCNplots Plot copy number by chromosome

Description

Generates plots of position along chromosomes vs. estimated copy number. If GC adjustment was
performed, then there are two plots per page; one before adjustment and one after adjustment.

Usage

S4 method for signature 'CopyEstimate'
chromosomeCNplots(copy, y.max = NULL, pch = 19, cex = 0.2,

pch.col = "black", seg.col = "red", lty = 1, lwd = 2, verbose = TRUE)
S4 method for signature 'AdjustedCopyEstimate'

chromosomeCNplots(copy, y.max = NULL, pch = 19, cex = 0.2,
pch.col = "black", seg.col = "red", lty = 1, lwd = 2, verbose = TRUE)

Arguments

copy A CopyEstimate or AdjustedCopyEstimate object.
y.max The maximum value of the y-axis of the scatter plots.
pch Style of points in the scatter plots.
cex Whether to square root the absolute copy number estimates before running the

segmentation.
pch.col Colour of points in the scatter plots.
seg.col Colour of copy number segmentation line.
lty Line type of plotted regression line.
lwd Line width of plotted regression line.
verbose Whether to print the progess of processing.

ClusteredScoresList 23

Details

See absoluteCN or relativeCN for how to do the GC adjusted copy number estimates, if this is
required. The segmentation line plotted is of the segmentation regions found by circular binary
segmentation.

Value

A number of pages of scatterplots. The output should, therefore, be sent to a PDF device.

Author(s)

Dario Strbenac

Examples

Not run:
library(BSgenome.Hsapiens.UCSC.hg18)
library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
load("inputsReads.RData")
windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),

width = 20000)
counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)

gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
min.mappability = 50, n.bins = 10, min.bin.size = 10,
poly.degree = 4, ploidy = c(2, 4))

abs.cn <- absoluteCN(input.windows = windows, input.counts = counts, gc.params = gc.par)

pdf("chrProfiles.pdf")
chromosomeCNplots(abs.cn, y.max = 8)
dev.off()

End(Not run)

ClusteredScoresList Container for coverage matrices with clustering results.

Description

Contains a list of coverage matrices, the parameters that were used to generate them origin, and also
cluster membership and expression data.

It also allows the user to take the ScoresList output of featureScores, and do their own custom
clustering on the coverage matrices, then save the clustering results in this container.

Constructor

ClusteredScoresList(x, anno = x@anno, scores = tables(x), expr = NULL, expr.name = NULL,
cluster.id, sort.name = NULL, sort.data = NULL) Creates a ClusteredScoresList object.

x A ScoresList object.
anno A GRanges object. Give this value if only a subset of features was used for clustering.
scores A list of coverage matrices. Give this if the matrices in x were modified before

clustering.

24 clusterPlots

expr A numeric vector, same length as number of rows of every coverage matrix.
expr.name A label, describing the expression data.
cluster.id A vector, same length as number of rows of every coverage matrix.
sort.data Vector of data to order features within clusters by.
sort.name Human readable description of what the sorting data is of.

Subsetting

In the following code snippets, x is a ClusteredScoresList object.

x[i] Creates a ClusteredScoresList object, keeping only the i matrices.

subsetRows(x, i = NULL) Creates a ClusteredScoresList object, keeping only the i features.

clusters(x) Creates a ClusteredScoresList object, keeping only the i features.

Accessors

In the following code snippets, x is a ClusteredScoresList object.

clusters(x) Get the cluster ID of each feature.

Author(s)

Dario Strbenac

clusterPlots Visualisation of tables of feature coverages.

Description

Takes the output of featureScores, or a modified version of it, and plots a heatmaps or lineplots
representation of clustered coverages.

Usage

S4 method for signature 'ClusteredScoresList'
clusterPlots(

scores.list, plot.ord = 1:length(scores.list), plot.type = c("heatmap", "line", "by.cluster"),
heat.bg.col = "black", summarize = c("mean", "median"), symm.scale = FALSE, cols = NULL, t.name = NULL,
verbose = TRUE, ...)

S4 method for signature 'ScoresList'
clusterPlots(scores.list, scale = function(x) x,

cap.q = 0.95, cap.type = c("sep", "all"), all.mappable = FALSE, n.clusters = NULL,
plot.ord = 1:length(scores.list), expr = NULL, expr.name = NULL, sort.data = NULL,
sort.name = NULL, plot.type = c("heatmap", "line", "by.cluster"),

summarize = c("mean", "median"), cols = NULL, t.name = NULL, verbose = TRUE, ...)

clusterPlots 25

Arguments

scores.list A ScoresList or ClusteredScoresList object.

scale A function to scale all the coverages by. Default : No scaling.

cap.q The quantile of coverages above which to make any bigger coverages equal to
the quantile.

cap.type If "sep", then the cap quantile is calculated and applied to each coverage matrix
separately. If "all", then one cap quantile is calculated based on all of the
matrices combined.

all.mappable If TRUE, then only features with all measurements not NA will be used.

n.clusters Number of clusters to find in the coverage data. Required.

plot.ord Order of the experiment types to plot.

expr A vector of expression values.

expr.name A label, describing the expression data.

sort.data A vector of values to sort the features within a cluster on.

sort.name Label to place under the sort.data plot.

plot.type Style of plot to draw.

heat.bg.col If a heatmap is being drawn, the background colour to plot NA values with.

summarize How to summarise the score columns of each cluster. Not relevant for heatmap
plot.

symm.scale Whether to make lineplot y-axis or heatmap intensity centred around 0. By
default, all plots are not symmetrically ranged.

cols The colours to use for the lines in the lineplot or intensities in the heatmap.

t.name Title to use above all the heatmaps or lineplots. Ignored when cluster-wise line-
plots are drawn.

verbose Whether to print the progress of processing.

... Further graphical paramters passed to plot when heatmap plot is drawn, that
influence how the points of the expression and sort data plots will look. If the
lineplot is being drawn, parameters to influence the line styles.

Details

A ClusteredScoresList should be created by the user, if they wish to do some custom clustering
and normalisation on the coverage matrices. Otherwise, if the user is happy with k-means or PAM
clustering, then the ScoresList object as output by featureScores() can be directly used. If
called with a ScoresList, then the matrices for each coverage type are joined. Then the function
supplied by the scale argument is used to scale the data. Next, each matrix is capped. Then each
matrix is divided by its maximum value, so that the Euclidean distance between maximum reads
and no reads is the same for each matrix. Lastly, either k-means or PAM clustering is performed
to get the cluster membership of each feature. If there are any NAs in the scores, then PAM will
be used. Otherwise, k-means is used for speed. Then, a ClusteredScoresList object is created,
and used. The clusters are guaranteed to be given IDs in descending order of summarised cluster
expression, if it is provided. If called with a ClusteredScoresList, no scaling or capping is done,
so it is the user’s responsibility to normalise the coverage matrices as they see fit, when creating the
ClusteredScoresList object.

If a ClusteredScoresList object is subsetted, the original data range is saved in a private slot,
so that if the user wants to plot a subset of the features, such as a certain cluster, for example,

26 clusterPlots

the intensity range of the heatmap, or the y-axis range of the lineplot will be the same as before
subsetting.

If expression data is given, the summarised expression level of each cluster is calculated, and the
clusters are plotted in order of decreasing expression, down the page. Otherwise, they are plotted in
ascending order of cluster ID. If a heatmap plot is being drawn, then a heatmap is drawn for every
coverage matrix, side-by-side, and a plot of each feature’s expression is put alongside the heatmaps,
if provided. If additional sort vector was given, the data within clusters are sorted on this vector,
then a plot of this data is made as the rightmost graph.

The lineplot style is similar to the heatmap plot, but clusters are summarised. A grid, with as many
rows as there are clusters, and as many columns as there are clusters is made, and lineplots showing
the summarised scores are made in the grid. Beside the grid, a boxplot of expression is drawn for
each cluster, if provided.

For a cluster-wise lineplot, a graph is drawn for each cluster, with the colours being the different
coverage types. Because it makes sense that there will be more clusters than there are types of cover-
age (typically double to triple the number), the plots are not drawn side-by-side, as is the layout for
the heatmaps. For this reason, sending the output to a PDF device is necessary. It is recommended
to make the width of the PDF device wider than the default. Since the coverage data between differ-
ent marks is not comparable, this method is inappropriate for visualising a ClusteredScoresList
object if it was created by the clusterPlots scoresList method. If the user, however, can come up
with a normalisation method to account for the differences that are apparent between different types
(i.e. peaked vs. spread) of marks that makes the coverages meaningfully comparable, they can alter
the tables, do their own clustering, and create a ClusteredScoresList object with the modified
tables.

Value

If called with a ScoresList, then a ClusteredScoresList is returned. If called with a ClusteredScoresList,
then nothing is returned.

Author(s)

Dario Strbenac

See Also

featureScores for generating coverage matrices.

Examples

data(samplesList) # Loads 'samples.list.subset'.
data(expr) # Loads 'expr.subset'.
data(chr21genes)

fs <- featureScores(samples.list.subset[1:2], chr21genes, up = 2000, down = 1000,
freq = 500, s.width = 500)

clusterPlots(fs, function(x) sqrt(x), n.clusters = 5, expr = as.numeric(expr.subset),
plot.type = "heatmap", pch = 19, cex = 0.5)

CopyEstimate 27

CopyEstimate Container for results of fold change copy number estimation.

Description

Contains the genomic coordinates of regions, and fold change estimates.

Constructor

CopyEstimate(windows, unadj.CN, unadj.CN.seg) Creates a CopyEstimate object.

windows A GRanges object.
unadj.CN A matrix of fold changes.
unadj.CN.seg A GRangesList object holding the segmentation results.

Additional Slots

These are added to by absoluteCN or relativeCN

A flag that contains if the copy number data is absolute or relative.

type cpgBoxplots Boxplots of intensity, binned by Cpg Density

Description

Either makes a side by side boxplot of two designs, or plots a single boxplot for the difference
between the two designs.

Usage

S4 method for signature 'AffymetrixCelSet'
cpgBoxplots(this, samples=c(1,2), subsetChrs="chr[1-5]", gcContent=7:18, calcDiff=FALSE, verbose=FALSE, nBins=40, pdfFile=NULL, ylim=if (calcDiff) c(-5,6) else c(4,15), col=if (calcDiff) "salmon" else c("lightgreen","lightblue"), mfrow=if (!is.null(pdfFile)) c(2,2) else c(1,1))
S4 method for signature 'matrix'
cpgBoxplots(this, ndfTable = NULL, organism, samples=c(1,2), subsetChrs="chr[1-5]", gcContent=7:18, calcDiff=FALSE, verbose=FALSE, nBins=40, pdfFile=NULL, ylim=if (calcDiff) c(-5,6) else c(4,15), col=if (calcDiff) "salmon" else c("lightgreen","lightblue"), mfrow=if (!is.null(pdfFile)) c(2,2) else c(1,1))

Arguments

this Either an AffymetrixCelSet or a matrix of intensity data.

ndfTable In the case of Nimblegen data, a data.frame with at least columns chr and
sequence. Must be in the same order of rows as the intensity data.

organism The BSgenome object of the genome build to use for getting DNA sequence
surrounding the probes.

samples Which 2 columns from the data matrix to use.

subsetChrs Which chromosomes to limit the analysis to.

gcContent A range of GC content, which only probes that have GC content in the range are
used for the graphing.

calcDiff Boolean. Plot the difference between the two samples ?

28 cpgDensityCalc

verbose Boolean. Print processing output.

nBins Bins to bin the intensities into.

pdfFile Name of file to output plots to.

ylim Y limit of graphs

col Colour of boxes.

mfrow Not specified by the user. Rows and columns to draw the plots in.

Details

CpG content of probes is calculated in a 600 base window surrounding the probe, with a linearly
decresasing weighting further away from the probe.

Value

Invisibly returns a list of the plots.

Author(s)

Mark Robinson, Dario Strbenac

cpgDensityCalc Calculate CpG Density in a Window

Description

Function to calculate CpG density around a position.

Usage

S4 method for signature 'data.frame,BSgenome'
cpgDensityCalc(x, organism, ...)
S4 method for signature 'GRangesList,BSgenome'

cpgDensityCalc(x, organism, verbose = TRUE, ...)
S4 method for signature 'GRanges,BSgenome'

cpgDensityCalc(x, organism, seq.len = NULL, window = NULL,
w.function = c("none", "linear", "exp", "log"),

verbose = TRUE)

Arguments

x A data.frame, with columns chr and position, or columns chr, start, end,
and strand. Also may be a GRangesList object, or GRanges.

window Bases around the locations that are in the window. Calculation will consider
window/2 - 1 bases upstream, and window/2 bases downstream.

w.function Weighting function to use. Can be "none", "linear", "log", or "exp"

organism The BSgenome object to calculate CpG density upon.

seq.len The fragment size of the sequence reads in x. Default: No extension.

verbose Print details of processing.

... Arguments passed into the data.frame or GRangesList method, but not used
until the GRanges method.

cpgDensityPlot 29

Details

If the version of the data frame with the start, end, and strand columns is given, the window will be
created around the TSS.

For weighting scheme "none", this is equivalent to the number of CG matches in the region. For
"linear" weighting, each match is given a score 1/x where x is the number of bases from the
postition that the match occurred, and the scores are summed. For exponential weighting and log-
arithmic weighting, the idea is similar, but the scores decay exponentially (exp^-5x/window) and
logarithmically (log2(2 - (distancesForRegion / window))).

Value

A numeric vector of CpG densities for each region.

Author(s)

Dario Strbenac

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18))
{

TSSTable <- data.frame(chr = c("chr1", "chr2"), position = c(100000, 200000))
cpgDensityCalc(TSSTable, organism = Hsapiens, window = 600)

}

cpgDensityPlot Plot the distribution of sequencing reads CpG densities.

Description

Function to generate a plot of the distribution of sequencing reads CpG densities.

Usage

S4 method for signature 'GRangesList'
cpgDensityPlot(x, cols=rainbow(length(x)), xlim=c(0,20), lty = 1, lwd = 1, main="CpG Density Plot", verbose=TRUE, ...)

Arguments

x A GRangesList object of reads to plot CpG density of

cols The line colour for each element of x

xlim xlim parameter passed to plot.

lty The line type for each element of x

lwd The line width for each element of x

main main parameter passed to plot

verbose Print details of processing.

... Arguments passed into cpgDensityCalc. seq.len and organism are required.

30 determineOffset

Details

See cpgDensityCalc for details of options for calculating the CpG density.

Value

A plot is created. The data processed by cpgDensityCalc is invisibly returned.

Author(s)

Aaron Statham

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18))
{

data(samplesList) # Loads 'samples.list.subset'.
cpgDensityPlot(samples.list.subset, seq.len=300, organism=Hsapiens, lwd=4, verbose=TRUE)

}

determineOffset Function to determine the normalising offset f that accounts for the
relative sequencing depth.

Description

The composition of a library influences the resulting read densities. To adjust the modelled mean
(in the Poisson model) for these composition effects, we estimate a normalising factor f that ac-
counts simultaneously for overall sequencing depth and composition. The derivation of this offset
is motivated by the M (log ratio) versus A (average-log-count) plot.

Usage

determineOffset(x, quantile = 0.998, controlPlot = list(show = FALSE,
nsamp = 50000, mfrow=c(1,1), xlim=NULL, ylim=NULL, main=NULL, ask=FALSE))

Arguments

x BayMethList object.

quantile quantile q to restrict values of A = log2(sampleInterest*control)/2

controlPlot list defining whether a MA plot should be shown.

- show logical. If ’TRUE’ the corresponding MA plot is shown. (default FALSE)
- nsamp number of genomic regions included in the plot. (These are sampled

without replacement).
- mfrow vector of the form "c(nr, nc)" to determine how several plots should be

ordered.
- xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.
- main If NULL the names of the sample of interest are used as title in the MA

plot. Alternatively, a vector with length equal to the number of samples of
interest can be provided.

- ask logical. If ’TRUE’ (and the R session is interactive) the user is asked for
input, before a new figure is drawn. (default FALSE).

empBayes 31

Value

A BayMethList object given as input, where the slot fOffset is filled accordingly.

Author(s)

Andrea Riebler

See Also

maPlot, plotSmear

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18)){
windows <- genomeBlocks(Hsapiens, chrs="chr21", width=100, spacing=100)
cpgdens <- cpgDensityCalc(windows, organism=Hsapiens,

w.function="linear", window=700)
co <- matrix(rnbinom(length(windows), mu=10, size=2), ncol=1)
sI <- matrix(rnbinom(2*length(windows), mu=5, size=2), ncol=2)
bm <- BayMethList(windows=windows, control=co, sampleInterest=sI,

cpgDens=cpgdens)

bm <- determineOffset(bm, controlPlot=list(show=TRUE, mfrow=c(1,2)))
}

empBayes Function to calculate prior parameters using empirical Bayes.

Description

Under the empirical Bayes approach (and assuming a uniform prior for the methylation level) the
shape and scale parameters for the gamma prior of the region-specific read density are derived. The
parameters are thereby determined in a CpG-dependent manner.

Usage

empBayes(x, ngroups = 100, ncomp = 1, maxBins=50000, method="beta", controlMethod=list(mode="full", weights=c(0.1, 0.8, 0.1), param=c(1,1)), ncpu = NULL, verbose = FALSE)

Arguments

x Object of class BayMethList.

ngroups Number of CpG density groups you would like to consider. The bins are clas-
sified based on its CpG density into one of ngroups classes and for each class
separately the set of prior parameters will be determined.

ncomp Number of components of beta distributions in the prior distribution for the
methylation level when method is equal to beta.

maxBins Maximum number of bins in one CpG density group used to derive the param-
eter estimates. If maxBins is smaller than the number of bins that are in one
groups than maxBins bins are sampled with replacement.

method Either DBD for a Dirac-Beta-Dirac mixture, representing a mixture a mixture of
a point mass at zero, a beta distribution and a point mass at one, or beta for as
Beta mixture with ncomp components.

32 empBayes

controlMethod list defining settings if the Dirac-Beta-Dirac mixture is chosen.

- mode Either full, fixedWeights or fixedBeta. Using the full both the
mixture weights and beta parameters are estimated. In mode fixedWeights
the weights are fixed given to the values in weights and only the parameters
of the beta component are estimated. In mode fixedBeta the parameters of
the beta component are fixed to the values specified in param. The default
mode is full.

- weights Numeric vector of length three specifying the weights for the Dirac-
Beta-Dirac mixture when mode is equal to fixedWeights. The first ele-
ment specifies the weight for the zero point mass, the second for the beta
component and the third for the point mass at one. The three values must
sum up to one. The default is c(0.1, 0.8, 0.1).

- param Numeric vector of length two specifying (positive) parameters of the
beta distribution component when mode is equal to fixedBeta. The default
is c(1,1).

ncpu Number of CPUs on your machine you would like to use in parallel. If ncpu is
set to NULL, half of the CPUs will be used on machines with a maximum of
four CPUs, and 2/3 will be used if more CPUs are available.

verbose Boolean indicating whether the empirical Bayes function should run in a verbose
mode (default ’FALSE’).

Details

BayMeth takes advantage of the relationship between CpG-density and read depth to formulate
a CpG-density-dependent gamma prior distribution for the region-specific read density. Taking
CpG-density into account the prior should stabilise the methylation estimation procedure for low
counts and in the presence of sampling variability. The shape and scale parameter of the gamma
prior distribution are determined in a CpG-density-dependent manner using empirical Bayes. For
each genomic bin the CpG density is provided in the BayMethList-object. Each bin is classified
based on its CpG-density into one of ngroups non-overlapping CpG-density intervals. For each
class separately, we derive the values for the shape and scale parameter under an empirical Bayes
framework using maximum likelihood. For CpG classes which contain more than maxBins bins, a
random sample drawn with replacement of size maxBins is used to derive these prior parameters.
Note that both read depths, from the SssI control and the sample of interest, are thereby taken into
account. We end up with ngroups parameter sets for shape and rate.

Value

A BayMethList object where the slot priorTab is filled. priorTab represent a list. The first
list entry contains the CpG group a bin is assigned to. The second entry contains the number
of components that have been used for the prior (at the moment 1). The following list entries
correspond to one sample of interest, respectively, and contain a matrix with the optimal shape and
scale parameters for all CpG classes. The first row contains the optimal shape parameter and the
second row the optimal scale parameter. The number of columns corresponds to the number of CpG
classes specified in ngroups.

Author(s)

Andrea Riebler

enrichmentCalc 33

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18)){
windows <- genomeBlocks(Hsapiens, chrs="chr21", width=100, spacing=100)
cpgdens <- cpgDensityCalc(windows, organism=Hsapiens,

w.function="linear", window=700)
co <- matrix(rnbinom(length(windows), mu=10, size=2), ncol=1)
sI <- matrix(rnbinom(2*length(windows), mu=5, size=2), ncol=2)
bm <- BayMethList(windows=windows, control=co,

sampleInterest=sI, cpgDens=cpgdens)
bm <- determineOffset(bm)

mask out unannotated high copy number regions
see Pickrell et al. (2011), Bioinformatics 27: 2144-2146.

should take about 3 minutes for both sample of interests with 2 CPUs.
bm <- empBayes(bm, ngroups=20)

}

enrichmentCalc Calculate sequencing enrichment

Description

Function to calculate enrichment over the whole genome of sequencing reads.

Usage

S4 method for signature 'GRanges'
enrichmentCalc(x, seq.len = NULL, verbose = TRUE)
S4 method for signature 'GRangesList'

enrichmentCalc(x, verbose = TRUE, ...)

Arguments

x A GRangesList or GRanges object. All chromosome lengths must be stored in
the Seqinfo of this object.

seq.len If sequencing reads need to be extended, the fragment size to be used.

verbose Whether to print the progress of processing.

... Argument seq.len above, not directly used in the GRangesList method.

Details

If seq.len is supplied, x is firstly extended, and then turned into a coverage object. The num-
ber of extended reads covering each base pair of the genome is then tabulated, and returned as a
data.frame.

Value

For the GRanges method, data.frame containing columns coverage and bases. For the GRangesList
method, a list of such data.frames.

34 enrichmentPlot

Author(s)

Aaron Statham

Examples

require(GenomicRanges)
data(samplesList) # Loads 'samples.list.subset'.
seqlengths(samples.list.subset)

tc <- enrichmentCalc(samples.list.subset, seq.len = 300)

enrichmentPlot Plot the distribution of sequencing enrichment.

Description

Function to generate a plot of the distribution of sequencing reads enrichments.

Usage

S4 method for signature 'GRangesList'
enrichmentPlot(x, seq.len, cols = rainbow(length(x)),

xlim = c(0, 20), main = "Enrichment Plot", total.lib.size = TRUE, verbose = TRUE, ...)

Arguments

x A GRangesList object of reads to plot enrichment of. The chromosome lengths
must be stored in the Seqinfo of this object.

seq.len The fragment size to be used for extending the sequencing reads.

cols The line colour for each element of x

xlim xlim parameter passed to plot, the default is appropriate for "linear" cpgDensityCalc
weighting.

main main parameter passed to plot

total.lib.size Whether to normalise enrichment values to the total number of reads per lane.

verbose Print details of processing.

... Additional graphical parameters to pass to plot.

Details

See enrichmentCalc for details of how the results are determined.

Value

A plot is created. The data processed by enrichmentCalc is invisibly returned.

Author(s)

Aaron Statham

expr 35

Examples

data(samplesList) # GRangesList of reads 'samples.list.subset'
enrichmentPlot(samples.list.subset, seq.len = 300, total.lib.size = FALSE)

expr Vector of expression differences

Description

The t-statistics of differences in expression for genes on chromosome 21 between prostate cancer
and normal epithelial cells.

Usage

expr.subset

Format

A numeric matrix, 309 rows and 1 column.

FastQC-class FastQC and associated classes

Description

The FastQC class stores results obtained from the FastQC application (see references), with a
slot for each FastQC module. The SequenceQC class contains the QC results of a single lane of
sequencing in three slots: Unaligned - FastQC results obtained from all reads (before alignment)
Aligned - FastQC results obtained from only reads which aligned Mismatches - a data.frame
containing counts for the number of mismatches of each type found at each sequencing cycle

Slots of a FastQC object

Basic_Statistics

Per_base_sequence_quality

Per_sequence_quality_scores

Per_base_sequence_content

Per_base_GC_content

Per_sequence_GC_content

Per_base_N_content

Sequence_Length_Distribution

Sequence_Duplication_Levels

Overrepresented_sequences

36 featureBlocks

Slots of a SequenceQC object

Unaligned - FastQC results obtained from all reads (before alignment)

Aligned - FastQC results obtained from only reads which aligned

Mismatches - a data.frame containing counts for the number of mismatches of each type found at
each sequencing cycle

MismatchTable - a data.frame containing counts of how many mismatches aligned sequences
contain

Author(s)

Aaron Statham

References

FastQC - http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

featureBlocks Make windows for distances around a reference point.

Description

Windows are made around a reference point, which is the start coordinate for features on the +
strand, and the end coordinate for features on the - strand. For unstranded features, the reference
point is taken to be the mid-point of the feature.

Usage

S4 method for signature 'data.frame'
featureBlocks(anno, ...)
S4 method for signature 'GRanges'

featureBlocks(anno, up = NULL, down = NULL, dist = c("base", "percent"),
keep.strand = FALSE)

Arguments

anno A data.frame or GRanges, describing some genomic features.

up The amount to go upstream or towards the start of a chromosome. Semantics
depend on the value of dist. See details.

down The amount to go downstream or towards the end of a chromosome. Semantics
depend on the value of dist. See details.

dist Whether up and down refer to bases, or a percentage of each feature’s width.

keep.strand Whether the blocks should keep the strands of their features, or if all blocks
should have strand be '*'

... Arguments from the list above that are not used directly within the data.frame
method.

featureScores 37

Details

up refers to how many bases to go upstream for stranded features, or for unstranded features, how
many bases to go towards the start of the chromosome, from the mid-point of the feature. Having
a negative value for up means that the windows will start downstream by that amount, for stranded
features. For unstranded features, it will start that many bases closer to the end of the chromosome,
relative to the feature mid-point.

down is defined analogously.

Value

A GRanges of windows surrounding reference points for the features described by anno.

Author(s)

Dario Strbenac

Examples

genes <- data.frame(chr = c("chr1", "chr3", "chr7", "chr22"),
start = seq(1000, 4000, 1000),
end = seq(1500, 4500, 1000),
strand = c('+', '-', '-', '+'))

featureBlocks(genes, 500, 500)

featureScores Get scores at regular sample points around genomic features.

Description

Given a GRanges / GRangesList object, or BAM file paths, of reads for each experimental condi-
tion, or a matrix or an AffynetrixCelSet, or a numeric matrix of array data, where the rows are
probes and the columns are the different samples,and an anntotation of features of interest, scores
at regularly spaced positions around the features is calculated. In the case of sequencing data, it
is the smoothed coverage of reads divided by the library size. In the case of array data, it is array
intensity.

Usage

The ANY,data.frame method:
featureScores(x, anno, ...)
The ANY,GRanges method:
featureScores(x, anno, up = NULL, down = NULL, ...)

Arguments

x: Paths to BAM files, a collection of mapped short reads, or a collection of microarray data.

anno: Annotation of the features to sample around.

p.anno: A data.frame with columns chr, position, an optionally index. Only provide this if x
is array data. If index is not provided, the rows are assumed to be in the same order as the
elements of x.

38 featureScores

mapping: A mapping between probes and genes, as made by annotationLookup. Avoids re-
computing the mapping if it has already been done. Only provide this if x is array data.

chrs: A mapping between chromosome names in an ACP file to the user’s feature annotation.
Only provide this if x is an AffymetrixCelSet. There is no need to provide this if the feature
annotation uses the same chromosome names as the ACP files do. Element i of this vector is
the name to give to the chromosome numbered i in the ACP information.

up: How far to go from the features’ reference points in one direction.

down: How far to go from the features’ reference points in the opposite direction.

dist: The type of distance measure to use, in determining the boundaries of the sampling area. Only
provide this if x is sequencing data. Default: "base". "percent" is also accepted.

freq: Score sampling frequency.

log2.adj: Whether to log2 scale the array intensities. Only provide this if x is array data. Default:
TRUE.

s.width: The width of smoothing to apply to the coverage. Only provide this if x is sequencing
data. This argument is optional. If not provided, then no smoothing is done.

mappability: A BSgenome object, or list of such objects, the same length as x that has bases for
which no mappable reads start at masked by N. If this was provided, then either s.width or
tag.len must be provided (but not both).

map.cutoff: The percentage of bases in a window around each sampling position that must be
mappable. Otherwise, the score at that position is repalced by NA. Default: 0.5

tag.len: Provide this if mappability was provided, but s.width was not.

use.strand: Whether to only consider reads on the same strand as the feature. Useful for RNA-seq
applications.

verbose: Whether to print the progess of processing. Default: TRUE.

Details

If x is a vector of paths or GRangesList object, then names(x) should contain the types of the
experiments.
If anno is a data.frame, it must contan the columns chr, start, and end. Optional columns
are strand and name. If anno is a GRanges object, then the name can be present as a column
called name in the element metadata of the GRanges object. If names are given, then the
coverage matrices will use the names as their row names.
An approximation to running mean smoothing of the coverage is used. Reads are extended to
the smoothing width, rather than to their fragment size, and coverage is used directly. This
method is faster than a running mean of the calculated coverage, and qualtatively almost iden-
tical.
If providing a matrix of array intensity values, the column names of this matrix are used as the
names of the samples.
The annotation can be stranded or not. if the annotation is stranded, then the reference point
is the start coordinate for features on the + strand, and the end coordinate for features on the -
strand. If the annotation is unstranded (e.g. annotation of CpG islands), then the midpoint of
the feature is used for the reference point.
The up and down values give how far up and down from the reference point to find scores.
The semantics of them depend on if the annotation is stranded or not. If the annotation is
stranded, then they give how far upstream and downstream will be sampled. If the annotation
is unstranded, then up gives how far towards the start of a chromosome to go, and down gives
how far towards the end of a chromosome to go.

findClusters 39

If sequencing data is being analysed, and dist is "percent", then they give how many percent
of each feature’s width away from the reference point the sampling boundaries are. If dist is
"base", then the boundaries of the sampling region are a fixed width for every feature, and the
units of up and down are bases. up and down must be identical if the features are unstranded.
The units of freq are percent for dist being "percent", and bases for dist being "base".
In the case of array data, the sequence of positions described by up, down, and freq actually
describe the boundaries of windows, and the probe that is closest to the midpoint of each win-
dow is chosen as the representative score of that window. On the other hand, when analysing
sequencing data, the sequence of positions refer to the positions that coverage is taken for.
Providing a mappability object for sequencing data is recommended. Otherwise, it is not
possible to know if a score of 0 is because the window around the sampling position is un-
mappable, or if there were really no reads mapping there in the experiment. Coverage is
normalised by dividing the raw coverage by the total number of reads in a sample. The cover-
age at a sampling position is multiplied by 1 / mappability. Any positions that have mappabilty
below the mappability cutoff will have their score set to NA.

Value

A ScoresList object, that holds a list of score matrices, one for each experiment type, and
the parameters that were used to create the score matrices.

Author(s)

Dario Strbenac, with contributions from Matthew Young at WEHI.

See Also

mergeReplicates for merging sequencing data replicates of an experiment type.

Examples

data(chr21genes)
data(samplesList) # Loads 'samples.list.subset'.

fs <- featureScores(samples.list.subset[1:2], chr21genes, up = 2000, down = 1000,
freq = 500, s.width = 500)

findClusters Find Clusters Epigenetically Modified Genes

Description

Given a table of gene positions that has a score column, genes will first be sorted into positional
order and consecutive windows of high or low scores will be reported.

Usage

findClusters(stats, score.col = NULL, w.size = NULL, n.med = NULL, n.consec = NULL,
cut.samps = NULL, maxFDR = 0.05, trend = c("down", "up"), n.perm = 100,

getFDRs = FALSE, verbose = TRUE)

40 findClusters

Arguments

stats A data.frame with (at least) column chr, and a column of scores. Genes must
be sorted in positional order.

score.col A number that gives the column in stats which contains the scores.

w.size The number of consecutive genes to consider windows over. Must be odd.

n.med Minimum number of genes in a window, that have median score centred around
them above a cutoff.

n.consec Minimum cluster size.

cut.samps A vector of score cutoffs to calculate the FDR at.

maxFDR The highest FDR level still deemed to be significant.

trend Whether the clusters must have all positive scores (enrichment), or all negative
scores (depletion).

n.perm How many random tables to generate to use in the FDR calculations.

getFDRs If TRUE, will also return the table of FDRs at a variety of score cutoffs, from
which the score cutoff for calling clusters was chosen.

verbose Whether to print progress of computations.

Details

First, the median over a window of size w.size is calculated in a rolling window and then associated
with the middle gene of the window. Windows are again run over the genes, and the gene at the
centre of the window is significant if there are also at least n.med genes with representative medians
above the score cutoff, in the window that surrounds it. These marker genes are extended outwards,
for as long as the score has the same sign. The order of the stats rows is randomised, and this
process in done for every randomisation.

The procedure for calling clusters is done at a range of score cutoffs. The first score cutoff to give an
FDR below maxFDR is chosen as the cutoff to use, and clusters are then called based on this cutoff.

Value

If getFDRs is FALSE, then only the stats table, with an additional column, cluster. If getFDRs
is TRUE, then a list with elements :

table The table stats with the additional column cluster.

FDR The table of score cutoffs tried, and their FDRs.

Author(s)

Dario Strbenac, Aaron Statham

References

Saul Bert, in preparation

GCadjustCopy 41

Examples

chrs <- sample(paste("chr", c(1:5), sep = ""), 500, replace = TRUE)
starts <- sample(1:10000000, 500, replace = TRUE)
ends <- starts + 10000
genes <- data.frame(chr = chrs, start = starts, end = ends, strand = '+')
genes <- genes[order(genes$chr, genes$start),]
genes$t.stat = rnorm(500, 0, 2)
genes$t.stat[21:30] = rnorm(10, 4, 1)
findClusters(genes, 5, 5, 2, 3, seq(1, 10, 1), trend = "up", n.perm = 2)

GCadjustCopy Calculate Absolute Copy Number from Sequencing Counts

Description

Taking into account mappability and GC content biases, the absolute copy number is calculated, by
assuming that the median read depth is a copy number of 1.

Usage

S4 method for signature 'data.frame,matrix,GCAdjustParams'
GCadjustCopy(input.windows, input.counts,

gc.params, ...)
S4 method for signature 'GRanges,matrix,GCAdjustParams'

GCadjustCopy(input.windows, input.counts,
gc.params, verbose = TRUE)

Arguments

input.windows A data.frame with (at least) columns chr, start, and end, or a GRanges ob-
ject.

input.counts A matrix of counts. Rows are genomic windows and columns are samples.

gc.params A GCAdjustParams object, holding parameters related to mappability and GC
content correction of read counts.

... verbose argument, if data.frame method called.

verbose Whether to print the progess of processing.

Details

First, the mappability of all counting windows is calculated, and windows that have mappability
less than the cutoff specified by in the parameters object are ignored in further steps. The remaining
windows have their counts scaled by multiplying their counts by 100 / percentage mappability.

The range of GC content of the counting windows is broken into a number of bins, as specified by
the user in the parameters object. A probability density function is fitted to the counts in each bin,
so the mode can be found. The mode is taken to be the counts of the copy neutral windows, for that
GC content bin.

A polynomial function is fitted to the modes of GC content bins. Each count is divided by its
expected counts from the polynomial function to give an absolute copy number estimate. If the
ploidy has been provided in the parameters object, then all counts within a sample are multiplied by
the ploidy for that sample. If the sample ploidys were omitted, then no scaling for ploidy is done.

42 GCAdjustParams

Value

A AdjustedCopyEstimate object describing the input windows and their estimates.

Author(s)

Dario Strbenac

Examples

Not run:
library(BSgenome.Hsapiens.UCSC.hg18)
library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
load("inputsReads.RData")
windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),

width = 20000)
counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)

gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
min.mappability = 50, n.bins = 10, min.bin.size = 10,
poly.degree = 4, ploidy = c(2, 4))

abs.cn <- GCadjustCopy(input.windows = windows, input.counts = counts, gc.params = gc.par)

End(Not run)

GCAdjustParams Container for parameters for mappability and GC content adjusted
absolute copy number estimation.

Description

The parameters are used by the absoluteCN function.

Constructor

GCAdjustParams(genome, mappability, min.mappability, n.bins = NULL, min.bin.size =
1, poly.degree = NULL, ploidy = 1) Creates a GCAdjustParams object.

genome A BSgenome object of the species that the experiment was done for.
mappability A BSgenome object, or the path to a FASTA file generated by GEM mappability

containing the mappability of each base in the genome.
min.mappability A number between 0 and 100 that is a cutoff on window mappability.
n.bins The number of GC content bins to divide the windows into, before finding the mode

of counts in each window.
min.bin.size GC bins with less than this many count windows inside them will be ignored.
poly.degree The degree of the polynomial to fit to the GC bins’ count modes.
ploidy A vector of multipliers to use on the estimated absolute copy number of each sample,

if the number of sets of chromosomes is known.

Author(s)

Dario Strbenac

GCbiasPlots 43

GCbiasPlots Plot GC content vs. Read Counts Before Normalising, and GC content
vs. Copy Estimates After Normalising.

Description

Two plots on the same plotting page are made for each sample. The top plot has estimates of copy
number separated by GC content before any GC correction was applied. The bottom plot shows the
copy number estimates after GC correction was applied.

Usage

S4 method for signature 'AdjustedCopyEstimate'
GCbiasPlots(copy, y.max = NULL, pch = 19,

cex = 0.2, pch.col = "black", line.col = "red", lty = 1, lwd = 2, verbose = TRUE)

Arguments

copy A CopyEstimate object.

y.max The maximum value of the y-axis of the scatter plots.

pch Style of points in the scatter plots.

cex Size of the points in the scatter plots.

pch.col Colour of points in the scatter plots.

line.col Colour of regression line in each scatter plot.

lty Line type of plotted regression line.

lwd Line width of plotted regression line.

verbose Whether to print the progess of processing.

Details

See absoluteCN or relativeCN for how to do the GC adjusted copy number estimates. The line
plotted through the scatterplots is a lowess line fit to the data points.

Value

A number of pages of scatterplots equal to the number of samples described by copy. The output
should, therefore, be sent to a PDF device.

Author(s)

Dario Strbenac

Examples

Not run:
library(BSgenome.Hsapiens.UCSC.hg18)
library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
load("inputsReads.RData")
windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),

width = 20000)

44 gcContentCalc

counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)

gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
min.mappability = 50, n.bins = 10, min.bin.size = 10,
poly.degree = 4, ploidy = c(2, 4))

abs.cn <- absoluteCN(input.windows = windows, input.counts = counts, gc.params = gc.par)

pdf("bias.pdf")
GCbiasPlots(abs.cn, y.max = 8)
dev.off()

End(Not run)

gcContentCalc Calculate The gcContent of a Region

Description

Function to calculate the GC content of windows

Usage

S4 method for signature 'GRanges,BSgenome'
gcContentCalc(x, organism, verbose = TRUE)
S4 method for signature 'data.frame,BSgenome'

gcContentCalc(x, organism, window = NULL, ...)

Arguments

x A GRanges object or a data.frame, with columns chr and either position or
start, end and strand.

window Bases around the locations that are in the window. Calculation will consider
windowSize/2 bases upstream, and windowSize / 2 - 1 bases downstream.

organism The BSgenome object to calculate gcContent upon.

verbose Whether to print the progess of processing.

... The verbose variable for the data.frame method, passed onto the GRanges
method.

Details

The windows considered will be windowSize/2 bases upstream and windowSize/2-1 bases down-
stream of the given position, for each position. The value returned for each region is a percentage
of bases in that region that are a G or C.

Value

A vector of GC content percentages, one for each region.

Author(s)

Aaron Statham

genomeBlocks 45

Examples

require(BSgenome.Hsapiens.UCSC.hg18)
TSSTable <- data.frame(chr = paste("chr", c(1,2), sep = ""), position = c(100000, 200000))
gcContentCalc(TSSTable, 200, organism=Hsapiens)

genomeBlocks Creates bins across a genome.

Description

Creates a compact GRanges representation of bins across specified chromosomes of a given genome.

Usage

S4 method for signature 'numeric'
genomeBlocks(genome, chrs = names(genome), width = NULL,

spacing = width)
S4 method for signature 'BSgenome'

genomeBlocks(genome, chrs = seqnames(genome), width = NULL,
spacing = width)

Arguments

genome Either a BSgenome object, or a named vector of integers (names being choromo-
some names, integers being the chromosome lengths), to get the chromosome
lengths from.

chrs A vector containing which chromosomes to create bins across. May either be
numeric indicies or chromosome names. Default is all chromosomes given by
genome.

width The width in base pairs of each bin.
spacing The space between the centres of each adjacent bin. By default, is equal to

the spacing parameter, which gives non-overlapping bins. Values larger than
spacing will give overlapping bins, and values smaller than spacing will give
gaps between each bin.

Value

Returns a GRanges object, compatible with direct usage in annotationBlocksCounts

Author(s)

Aaron Statham

See Also

annotationBlocksCounts

Examples

chr.lengths <- c(800, 200, 200)
names(chr.lengths) <- c("chr1", "chr2", "chr3")
genomeBlocks(chr.lengths, width = 200)

46 genQC

genQC Plot Quality Checking Information for Sequencing Data

Description

A series of quality control plots for sequencing data are made.

Usage

S4 method for signature 'character'
genQC(qc.data, ...)
S4 method for signature 'SequenceQCSet'

genQC(qc.data, expt = "Experiment")

Arguments

qc.data A vector of character strings, each containing an absolute path to an RData file
of a SequenceQC object, or a SequenceQC set object.

expt The names of the experiments which the lanes are about.

... The expt argument, which is not directly used in the character method.

Details

qc.data can be named, in which case this gives the names of the lanes used in the plotting. Other-
wise the lanes will be given the names "Lane 1", "Lane 2", ..., "Lane n".

Value

The function is called for its output. The output is multiple pages, so the pdf device should be called
before this function is.

Author(s)

Dario Strbenac

References

FastQC: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

Examples

Not run:
qc.files <- list.files(qc.dir, "QC.*RData", full.names = TRUE)
genQC(qc.files, "My Simple Experiment")

End(Not run)

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

getProbePositionsDf 47

getProbePositionsDf Translate Affymetrix probe information in a table.

Description

Translates the probe information in the AromaCellPositionFile to a data.frame object.

Usage

S4 method for signature 'AffymetrixCdfFile'
getProbePositionsDf(cdf, chrs, ..., verbose = TRUE)

Arguments

cdf An AffymetrixCdfFile object.

chrs A vector of chromosome names. Optional.

... Further arguments to send to getCellIndices.

verbose Logical; whether or not to print out progress statements to the screen.

Details

This assumes that the AromaCellPositionFile exist.

Value

A data.frame with 3 columns: chr, position, index

Author(s)

Mark Robinson

Examples

not run
probePositions <- getProbePositionsDf(cdfU)

getSampleOffsets Calculates the sample-specific offsets, using the neutral state

Description

ABCD-DNA combines CNV offsets with sample specific factors. This function calculates the latter,
using a set of neutral regions (and corresponding counts in the count table).

Usage

getSampleOffsets(obj, ref = 1, quantile = 0.99, min.n = 100, plot.it = FALSE, force = FALSE, ...)

48 hcRegions

Arguments

obj a QdnaData object

ref integer index, giving the sample to use as reference

quantile quantile of the A-values to use

min.n minimum number of points to include

plot.it logical, whether to plot an M-A plot for each sample against the reference (de-
fault: FALSE)

force logical, whether to recalculate the sample-specific offsets (only needed if they
are already calculated)

... arguments to pass to the maPlot function

Details

The sample-specific offset is calculated as the median M-value beyond (i.e. to the right) an A-value
quantile, using only the copy-number-neutral regions, as specified in the incoming QdnaData object.

Value

returns a QdnaData object (copied from the obj argument) and populates the $DGEList$samples$norm.factors
element and sets the $sample.specific.calculated to TRUE.

Author(s)

Mark Robinson

References

http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/ABCD-DNA.html

See Also

QdnaData

Examples

library(Repitools)
qd <- QdnaData(counts=counts, regions=gb, design=design,
cnv.offsets=cn, neutral=(regs=="L=4 P=2"))
qd <- getSampleOffsets(qd,ref=1)

hcRegions Masking files for hg19

Description

File to mask out areas of the genome that are prone to causing false positives in ChIP-seq and
other sequencing based functional assays, as proposed by Pickrell et al. (2011), Bioinformatics 27:
2144-2146, http://eqtl.uchicago.edu/Home.html.

hyperg2F1_vec 49

Usage

hcRegions

Format

A GRanges object created using the bedfile provided on http://eqtl.uchicago.edu/Masking/seq.cov1.ONHG19.bed.gz.

Source

Pickrell et al. (2011), Bioinformatics 27: 2144-2146.

hyperg2F1_vec Gaussian hypergeometric function for vectorial arguments

Description

Computes the value of the Gaussian hypergeometric function 2_F_1 as defined in Abramowitz and
Stegun (1972, page 558), i.e. for |z| < 1 and c > b > 0 using the Cephes library.

Usage

hyperg2F1_vec(a,b,c,z)

Arguments

a (Vectorial) parameter a.

b parameter b (of same length as a)

c parameter c (of same length as a)

z parameter z (of same length as a)

Details

The function is in particular efficient for vectorial arguments as the loop is shifted to C. Note: If
vectorial arguments are provided, all arguments need to be of the same length.

Value

The value of the Gaussian hypergeometric function F(a,b,c,z) for c > b > 0 and |z| < 1.

Author(s)

Andrea Riebler and Daniel Sabanes Bove

References

Abramowitz and Stegun 1972. _Handbook of mathematical functions with formulas, graphs and
mathematical tables_. New York: Dowver Publications.

www.netlib.org/cephes/

50 loadPairFile

See Also

package hypergeo or BMS.

Examples

hyperg2F1_vec(-10.34,2.05,3.05,0.1725)
hyperg2F1_vec(30,1,20,.8) # returns about 165.8197
hyperg2F1_vec(30,10,20,0) # returns one
hyperg2F1_vec(10,15,20,-0.1) # returns about 0.4872972

hyperg2F1_vec(c(-10.34, 30, 10), c(2.05, 1, 10), c(3.05, 20, 20),
c(0.1725, 0.8, 0))

hyperg2F1_vec(a=1.2+1:10/10, b=rep(1.4,10), c=rep(1.665,10), z=rep(.3,10))

loadPairFile A routine to read Nimblegen tiling array intensities

Description

Reads a file in Nimblegen pair format, returning log2 intensities of probes referenced by the sup-
plied ndf data frame.

Usage

loadPairFile(filename = NULL, ndf = NULL, ncols = 768)

Arguments

filename the name of the pair file which intensities are to be read from.

ndf a data frame produced by processNDF.

ncols the number of columns of probes on the array - must be the same value as used
in processNDF. The default works for 385K format arrays.

Details

Reads in intensities from the specified pair file, then matches probes against those specified in the
supplied ndf.

Value

a vector of log2 intensities, the number of rows of the supplied ndf in length.

Author(s)

Aaron Statham

See Also

loadSampleDirectory for reading multiple pair files with the same ndf. processNDF

loadSampleDirectory 51

Examples

Not run
#
Read in the NDF file
ndfAll <- processNDF("080310_HG18_chr7RSFS_AS_ChIP.ndf")
#
Subset the NDF to only probes against chromosomes
ndf <- ndfAll[grep("^chr", ndfAll$chr),]
#
Read in a pair file using the chromosome only NDF
arrayIntensity <- loadPairFile("Pairs/Array1_532.pair", ndf)
#

loadSampleDirectory A routine to read Nimblegen tiling array intensities

Description

Reads all files in Nimblegen pair format within the specified directory, returning log2 intensities of
probes referenced by the supplied ndf data frame.

Usage

loadSampleDirectory(path = NULL, ndf = NULL, what="Cy3", ncols = 768)

Arguments

path the directory containing the pair files to be read.

ndf a data frame produced by processNDF.

what specifies the channel(s) to be read in - either Cy3, Cy5, Cy3/Cy5, Cy5/Cy3,
Cy3andCy5, Cy5andCy3.

ncols the number of columns of probes on the array - must be the same value as used
in processNDF. The default works for 385K format arrays.

Details

Reads in intensities of all arrays contained within path. The parameter what determines which
fluorescent channels are read, and how the are returned. Cy3 and Cy5 return the log2 intensity
of the specified single channel. Cy3/Cy5 and Cy5/Cy3 return the log2 ratio of the two channels.
Cy3andCy5 and Cy5andCy3 return the log2 intensity of both channels in separate columns of the
matrix.

Value

a matrix of log2 intensites, with the same number of rows as the supplied ndf and depending on
the value of what either one or two columns per array.

Author(s)

Aaron Statham

52 makeWindowLookupTable

See Also

loadPairFile for reading a single pair files. processNDF

Examples

Not run
#
Read in the NDF file
ndfAll <- processNDF("080310_HG18_chr7RSFS_AS_ChIP.ndf")
#
Subset the NDF to only probes against chromosomes
ndf <- ndfAll[grep("^chr", ndfAll$chr),]
#
Read in a directory of pair files, returning both the Cy3 and Cy5 fluorescence in separate columns
arrayIntensities <- loadSampleDirectory("Arrays", ndf, what="Cy3andCy5")
#

makeWindowLookupTable Using the output of ’annotationLookup’, create a tabular storage of
the indices

Description

To allow easy access to the probe-level data for either a gene, or an area of the promoter (over all
genes), this routine takes the output of annotationLookup and organizes the indices into a table,
one row for each gene and one column for each region of the promoter.

Usage

makeWindowLookupTable(indexes = NULL, offsets = NULL, starts = NULL, ends = NULL)

Arguments

indexes a list of indices, e.g. indexes element from annotationLookup output

offsets a list of offsets, e.g. offsets element from annotationLookup output

starts a vector of starts

ends a vector of ends

Details

The vectors starts and ends (which should be the same length) determine the number of columns
in the output matrix.

Value

A matrix with rows for each gene and columns for each bin of the promoter. NA signifies that there
is no probe in the given distance from a TSS.

Author(s)

Mark Robinson

mappabilityCalc 53

See Also

annotationLookup

Examples

create example set of probes and gene start sites
probeTab <- data.frame(position=seq(1000,3000,by=200), chr="chrX", strand = '-')
genes <- data.frame(chr="chrX", start=c(2100, 1000), end = c(3000, 2200), strand=c("+","-"))
rownames(genes) <- paste("gene",1:2,sep="")

Call annotationLookup() and look at output
aL <- annotationLookup(probeTab, genes, 500, 500)
print(aL)

Store the results of annotationLookup() in a convenient tabular format
lookupTab <- makeWindowLookupTable(aL$indexes, aL$offsets, starts=seq(-400,200,by=200), ends=seq(-200,400,by=200))
print(lookupTab)

mappabilityCalc Calculate The Mappability of a Region

Description

Function to calculate mappability of windows

Usage

S4 method for signature 'GRanges,MappabilitySource'
mappabilityCalc(x, organism, window = NULL,

type = c("block", "TSS", "center"), verbose = TRUE)
S4 method for signature 'data.frame,MappabilitySource'

mappabilityCalc(x, organism, window = NULL,
type = c("block", "TSS", "center"), ...)

Arguments

x A GRanges object or a data.frame, with columns chr and either position or
start, end and strand.

window Bases around the locations that are in the window. Calculation will consider
windowSize/2 bases upstream, and windowSize/2-1 bases downstream.

For unstranded features, the effect is the same as for + strand features.

type What part of the interval to make the window around. If the value is "TSS",
the the start coordinate is used for all + strand features, and the end coordinate
is used for all - strand features. If "cemter" is chosen, then the coordinate
that is half way between the start and end of each feature will be used as the
reference point. "block" results in the use the start and end coordinates without
modification.

organism The BSgenome object to calculate mappability upon, or the file path to a FASTA
file generated by GEM Mappability, or the path to a bigWig file containing map-
pability scores.

54 MappabilitySource

verbose Whether to print the progess of processing.

... The verbose variable for the data.frame method, passed onto the GRanges
method.

Details

The windows considered will be windowSize/2 bases upstream and windowSize/2-1 bases down-
stream of the given position of stranded features, and the same number of bases towards the start and
end of the chromosome for unstranded features. The value returned for each region is a percentage
of bases in that region that are not N (any base in IUPAC nomenclature).

For any positions of a window that are off the end of a chromosome, they will be considered as
being N.

Value

A vector of mappability percentages, one for each region.

Author(s)

Aaron Statham

Examples

Not run:
require(BSgenome.Hsapiens36bp.UCSC.hg18mappability)

TSSTable <- data.frame(chr = paste("chr", c(1,2), sep = ""), position = c(100000, 200000))
mappabilityCalc(TSSTable, Hsapiens36bp, window = 200, type = "TSS")

End(Not run)

MappabilitySource Superclass for datatypes that can refer to genome mappability data.

Description

This class is simply the union of character and BSgenome classes.

Author(s)

Dario Strbenac

maskOut 55

maskOut Function to mask suspicious regions.

Description

Function to mask out regions that are prone to causing problems in the empirical Bayes approach
empBayes. The corresponding bins are marked and in the empirical Bayes approach not taken into
account. Notice that methylation estimates using methylEst will nevertheless be produced for these
bins.

Usage

maskOut(x, ranges)

Arguments

x Object of class BayMethList.

ranges A GRanges object definining the coordinates of regions to be masked out.

Value

A BayMethList object where the slot maskout is filled with a boolean vector indicating which bins
will be excluded in empBayes.

Author(s)

Andrea Riebler

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18)){
windows <- genomeBlocks(Hsapiens, chrs="chr21", width=100, spacing=100)
cpgdens <- cpgDensityCalc(windows, organism=Hsapiens,

w.function="linear", window=700)
co <- matrix(rnbinom(length(windows), mu=10, size=2), ncol=1)
sI <- matrix(rnbinom(2*length(windows), mu=5, size=2), ncol=2)
bm <- BayMethList(windows=windows, control=co,

sampleInterest=sI, cpgDens=cpgdens)

mask out unannotated high copy number regions
see Pickrell et al. (2011), Bioinformatics 27: 2144-2146.
data(hcRegions)

bm <- maskOut(bm, hcRegions)
}

56 mergeReplicates

mergeReplicates Merge GRanges that are of replicate experiments.

Description

A lane of next generation sequencing data can be stored as a GRanges object. Sometimes, a
GRangesList of various lanes can have experimental replicates. This function allows the merg-
ing of such elements.

Usage

S4 method for signature 'GRangesList'
mergeReplicates(reads, types, verbose = TRUE)

Arguments

reads A GRangesList.

types A vector the same length as reads, that gives what type of experiment each
element is of.

verbose Whether to print the progess of processing.

Details

The experiment type that each element of the merged list is of, is stored in the first element of the
metadata list.

Value

A GRangesList with one element per experiment type.

Author(s)

Dario Strbenac

Examples

library(GenomicRanges)
grl <- GRangesList(GRanges("chr1", IRanges(5, 10)),

GRanges("chr18", IRanges(25, 50)),
GRanges("chr22", IRanges(1, 100)))

antibody <- c("MeDIP", "MeDIP", "H3K4me3")
mergeReplicates(grl, antibody)

methylEst 57

methylEst Function to derive regional methylation estimates.

Description

Posterior mean and variance for the regional methylation level are derived for all genomic regions.
Credible intervals can be computed either numerically from the posterior marginal distribution or
by computing them on logit scale and transferring them back.

Usage

methylEst(x, verbose=FALSE, controlCI = list(compute = FALSE, method = "Wald",
level = 0.95, nmarg = 512, ncpu = NULL))

Arguments

x Object of class BayMethList.

verbose Boolean indicating whether the methylEst function should run in a verbose mode
(default ’FALSE’).

controlCI list defining whether credible intervals should be derived.

- compute logical. If ’TRUE’ credible intervals are derived. (default FALSE)

- method There are three possible types of credible intervals that can be chosen
if a uniform prior, e.g. Beta(1,1), is chosen: ’Wald’ (default), ’HPD’, ’quan-
tile’. The Wald-type intervals are the fastest to compute. The are calculated
on logit scale and then transferred back. Due to numerical integration of the
posterior marginal posterior distributions, the computation of highest pos-
terior density (HPD) interval and quantile-based interval is computationally
more expensive. However, in our applications HPD intervals provided best
coverage.
Note, using a beta mixture or a Dirac-beta-Dirac (DBD) mixture as prior
distribution for the methylation level only method="quantile" is avail-
able.

- level numerical value defining the credible level. Default: 0.95.

- nmarg Number of points at which the posterior marginal is evaluated (only
relevant for method="quantile" or method="HPD").

- ncpu Number of CPUs on your machine you would like to use in parallel. If
ncpu is set to NULL, half of the CPUs will be used on machines with a
maximum of four CPUs, and 2/3 will be used if more are available.

Details

The posterior mean and the variance are analytically available and therefore straightforward to effi-
ciently compute; Wald-based credible intervals are obtained on logit scale and then back-transferred
to ensure values withing 0 and 1. HPD and quantile-based credible intervals are computed by nu-
merical integration of the posterior marginal distribution.

58 multiHeatmap

Value

A BayMethList object where the slot methEst is filled with a list containing the following elements:

mean Matrix where the number of columns equals the number of samples of interest.
Each column contains the posterior mean methylation level for each bin.

var Matrix where the number of columns equals the number of samples of interest.
Each column contains posterior variance for each bin.

ci List with length equal to the number of samples of interest. Each list element
contains a matrix where the first column contains the lower CI bound and the
second column the upper CI bound.

W Matrix where the number of columns equals the number of samples of inter-
est. Each column contains the normalisation factor of the posterior marginal
distribution for each bin.

al Matrix where the number of columns equals the number of samples of interest.
Each column contains the prior shape parameter for each bin

bl Matrix where the number of columns equals the number of samples of interest.
Each column contains the prior scale parameter for each bin

Author(s)

Andrea Riebler

Examples

if(require(BSgenome.Hsapiens.UCSC.hg18)){
windows <- genomeBlocks(Hsapiens, chrs="chr21", width=100, spacing=100)
cpgdens <- cpgDensityCalc(windows, organism=Hsapiens,

w.function="linear", window=700)
co <- matrix(rnbinom(length(windows), mu=10, size=2), ncol=1)
sI <- matrix(rnbinom(2*length(windows), mu=5, size=2), ncol=2)
bm <- BayMethList(windows=windows, control=co,

sampleInterest=sI, cpgDens=cpgdens)

bm <- determineOffset(bm)
should take about 3 minutes for both samples of interests with 2 CPUs.
bm <- empBayes(bm)
bm <- methylEst(bm, controlCI = list(compute = FALSE, method = "Wald",

level = 0.95, nmarg = 512, ncpu = NULL))
}

multiHeatmap Superfigure plots

Description

This function takes a list of matrices and plots heatmaps for each one. There are several features
for the spacing (X and Y), colour scales, titles and label sizes. If a matrix has row and/or column
names, these are added to the plot.

Usage

multiHeatmap(dataList, colourList, titles = NULL, main = "", showColour = TRUE, xspace = 1, cwidth = 0.5, ystarts = c(0.05, 0.9, 0.925, 0.95, 0.98), rlabelcex = 1, clabelcex = 1, titlecex = 1.2, maincex = 1.5, scalecex = 0.7, offset=.001)

multiHeatmap 59

Arguments

dataList A list of matrices to be plotted as different panels

colourList A list of colourscales (if length 1, it is copied for all panels of the plot)

titles A vector of panel titles

main A main title

showColour logical or logical vector, whether to plot the colour scale

xspace The space between the panels (relative to number of columns). This can be
either a scalar or a vector of length(dataList)+1

cwidth widths of the colour scales relative to the width of the panels

ystarts A vector of length 5 of numbers between 0 and 1 giving the relative Y positions
of where the heatmaps, colourscale labels, colour scales, panel titles and main
title (respectively) start

rlabelcex character expansion factor for row labels

clabelcex character expansion factor for column labels

titlecex character expansion factor for panel titles

maincex character expansion factor for main title

scalecex character expansion factor for colour scale labels

offset small offset to adjust scales for point beyond the colour scale boundaries

Value

This function is called for its output, a plot in the current device.

Author(s)

Mark Robinson

Examples

library(gplots)

cL <- NULL
br <- seq(-3,3,length=101)
col <- colorpanel(low="blue",mid="grey",high="red",n=101)
cL[[1]] <- list(breaks=br,colors=col)
br <- seq(-2,2,length=101)
col <- colorpanel(low="green",mid="black",high="red",n=101)
cL[[2]] <- list(breaks=br,colors=col)
br <- seq(0,20,length=101)
col <- colorpanel(low="black",mid="grey",high="white",n=101)
cL[[3]] <- list(breaks=br,colors=col)

testD <- list(matrix(runif(400),nrow=20),matrix(rnorm(100),nrow=20),matrix(rpois(100,lambda=10),nrow=20))
colnames(testD[[1]]) <- letters[1:20]
rownames(testD[[1]]) <- paste("row",1:20,sep="")

multiHeatmap(testD,cL,xspace=1)

60 plotClusters

plotClusters Plot Scores of Cluster Regions

Description

Given an annotation of gene positions that has a score column, the function will make a series of
bar chart plots, one for each cluster.

Usage

S4 method for signature 'data.frame'
plotClusters(x, s.col = NULL, non.cl = NULL, ...)
S4 method for signature 'GRanges'

plotClusters(x, s.col = NULL, non.cl = NULL, ...)

Arguments

x A summary of genes and their statistical score, and the cluster that they be-
long to. Either a data.frame or a GRanges. If a data.frame, then (at least)
columns chr, start, end, strand, name and cluster. Also a score column,
with the column name describing what type of score it is. If a GRanges, then the
elementMetadata should have a DataFrame with a score column, and columns
named "cluster" and "name".

s.col The column number of the data.frame when data is a data.frame, or the
column number of the DataFrame when data is a GRanges object. The name of
this column is used as the y-axis label in the plot.

non.cl The value in the cluster column that represents genes that are not in any cluster

... Further parameters to be passed onto plot.

Value

A plot for each cluster is made. Therefore, the PDF device should be opened before this function is
called.

Author(s)

Dario Strbenac

Examples

library(GenomicRanges)
g.summary <- GRanges("chr1",

IRanges(seq(1000, 10000, 1000), width = 100),
rep(c('+', '-'), 5),
`t-statistic` = rnorm(10, 8, 2),
cluster = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 0),
name = paste("Gene", 1:10))

plotClusters(g.summary, 1, 0, ylim = c(4, 12), lwd = 5)

plotQdnaByCN 61

plotQdnaByCN Plotting the response of qDNA-seq data by CNV

Description

Given groupings of relative CNV state, this function produces M-A (log-fold-change versus log-
average) plots to compare two samples relative read densities. In addition, it calculates a scaling
factor at a specified quantile and plots the median M value across all the groups.

Usage

plotQdnaByCN(obj, cnv.group, idx.ref = 1, idx.sam = 2, min.n = 100, quantile = 0.99, ylim = c(-5, 5), ...)

Arguments

obj a QdnaData object

cnv.group a character vector or factor giving the relative CNV state. This must be the
same length as the number of regions in obj

idx.ref index of the reference sample (denominator in the calculation of M values)

idx.sam index of the sample of interest (numerator in the calculation of M values)

min.n minimum number of points to include

quantile quantile of the A-values to use

ylim y-axis limits to impose on all M-A plots

... further arguments sent to maPlot

Value

a plot to the current graphics device

Author(s)

Mark Robinson

References

http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/ABCD-DNA.html

See Also

QdnaData, ~~~

Examples

library(Repitools)
qd <- QdnaData(counts=counts, regions=gb, design=design,
cnv.offsets=cn, neutral=(regs=="L=4 P=2"))
plotQdnaByCN(qd,cnv.group=regs,idx.ref=3,idx.sam=2)

62 processNDF

processNDF Reads in a Nimblegen microarray design file (NDF)

Description

Reads a Nimblegen microarray design file (NDF file) which describes positions and sequences of
probes on a Nimblegen microarray.

Usage

processNDF(filename = NULL, ncols = 768)

Arguments

filename the name of the Nimblegen microarray design file
ncols the number of columns of probes on the array - must be the same value as will

be passed to loadPairFile or loadSampleDirectory. The default works for
385K format arrays.

Details

Reads in a Nimblegen microarray design file. This enables the reading in and annotation of Nim-
blegen microarray data files (pair files).

Value

a data frame containing

chr the chromosome the probe was designed against
position the position of the sequence the probe was designed against (probe centre)
strand the strand the probe was designed against
index the index (x y position) the probe occupies on the array
sequence the actual DNA sequence synthesised onto the array
GC the percent GC content of the probe sequence

Author(s)

Aaron Statham

See Also

loadSampleDirectory, loadPairFile

Examples

Not run
#
Read in the NDF file
ndfAll <- processNDF("080310_HG18_chr7RSFS_AS_ChIP.ndf")
#
Subset the NDF to only probes against chromosomes
ndf <- ndfAll[grep("^chr", ndfAll$chr),]

profilePlots 63

profilePlots Create line plots of averaged signal across a promoter for gene sets,
compared to random sampling.

Description

Creates a plot where the average signal across a promoter of supplied gene lists is compared to
random samplings of all genes, with a shaded confidence area.

Usage

S4 method for signature 'ScoresList'
profilePlots(x, summarize = c("mean", "median"), gene.lists,
n.samples = 1000, confidence = 0.975, legend.plot = "topleft", cols = rainbow(length(gene.lists)),
verbose = TRUE, ...)

Arguments

x A ScoresList object. See featureScores.

summarize How to summarise the scores for each bin into a single value.

gene.lists Named list of logical or integer vectors, specifying the genes to be aver-
aged and plotted. NAs are allowed if the vector is logical.

n.samples The number of times to randomly sample from all genes.

confidence A percentage confidence interval to be plotted (must be > 0.5 and < 1.0).

legend.plot Where to plot the legend - directly passed to legend. NA suppresses the legend.

cols The colour for each of the genelists supplied.

verbose Whether to print details of processing.

... Extra arguments to matplot, like x- and y-limits, perhaps.

Details

For each table of scores in x, a plot is created showing the average signal of the genes specified
in each list element of gene.lists compared to n.samples random samplings of all genes, with
confidence % intervals shaded. If an element of gene.lists is a logical vector, its length must
be the same as the number of rows of the score tables.

Value

A series of plots.

Author(s)

Aaron Statham

Examples

See examples in manual.

64 QdnaData

QdnaData A container for quantitative DNA sequencing data for ABCD-DNA
analyses

Description

QdnaData objects form the basis for differential analyses of quantitative DNA sequencing data(i.e.
ABCD-DNA). A user is required to specify the minimum elements: a count table, a list of regions
and a design matrix. For copy-number-aware analyses, a table of offsets and the set of neutral
regions needs to be given.

Usage

QdnaData(counts, regions, design, cnv.offsets = NULL, neutral = NULL)

Arguments

counts table of counts for regions of interest across all samples

regions a GRanges object giving the regions

design a design matrix

cnv.offsets a table of offsets. If unspecified (or NULL), a matrix of 1s (i.e. no CNV) is used

neutral a logical vector, or indices, of the regions deemed to be neutral. If unspecified
(or NULL), all regions are used

Details

QdnaData objects are geared for general differential analyses of qDNA-seq data. If CNV is present
and prominent, the objects and methods available with QdnaData perform adjustments and spot
checks before the differential analysis.

Value

a QdnaData object (effectively a list) is returned

Author(s)

Mark Robinson

References

http://imlspenticton.uzh.ch/robinson_lab/ABCD-DNA/ABCD-DNA.html

See Also

getSampleOffsets, plotQdnaByCN, setCNVOffsets

regionStats 65

Examples

require(GenomicRanges)
cnt <- matrix(rpois(20,lambda=10),ncol=4)
gr <- GRanges("chr1",IRanges(seq(2e3,6e3,by=1e3), width=500))
des <- model.matrix(~c(0,0,1,1))
qd <- QdnaData(counts=cnt, regions=gr, design=des)

regionStats Find Regions of significance in microarray data

Description

The function finds the highest smoothed score cutoff for a pre-specified FDR. Smoothing is per-
formed over a specified number of basepairs, and regions must have a minimum number of qual-
ifying probes to be considered significant. The FDR is calculated as the ratio of the number of
significant regions found in a permutation-based test, to the number found in the actual experimen-
tal microarray data.

Usage

S4 method for signature 'matrix'
regionStats(x, design = NULL, maxFDR=0.05, n.perm=5, window=600, mean.trim=.1, min.probes=10, max.gap=500, two.sides=TRUE, ndf, return.tm = FALSE, verbose=TRUE)
S4 method for signature 'AffymetrixCelSet'

regionStats(x, design = NULL, maxFDR=0.05, n.perm=5, window=600, mean.trim=.1, min.probes=10, max.gap=500, two.sides=TRUE, ind=NULL, return.tm = FALSE, verbose=TRUE)

Arguments

x An AffymetrixCelSet or matrix of array data to use.

design A design matrix of how to manipulate

maxFDR Cutoff of the maximum acceptable FDR

n.perm Number of permutations to use

window Size of window, in base pairs, to check for

mean.trim A number representing the top and bottom fraction of ordered values in a win-
dow to be removed, before the window mean is calculated.

min.probes Minimum number of probes in a window, for the region to qualify as a region of
significance.

max.gap Maximum gap between significant probes allowable.

two.sides Look for both significant positive and negative regions.

ind A vector of the positions of the probes on the array

ndf The Nimblegen Definition File for Nimblegen array data.

return.tm If TRUE, the values of the trimmed means of the intensities and permuted in-
tensities are also retuned from the function.

verbose Whether to print the progress of processing.

66 relativeCN

Value

A RegionStats object (list) with elements

regions A list of data.frame. Each data.frame has columns chr, start, end, score.

tMeanReal Matrix of smoothed scores of intensity data. Each column is an experimental
design.

tMeanPerms Matrix of smoothed scores of permuted intensity data. Each column is an exper-
imental design.

fdrTables List of table of FDR at different score cutoffs. Each list element is for a different
experimental design.

Author(s)

Mark Robinson

Examples

Not run:
library(Repitools)
library(aroma.affymetrix)

assumes appropriate files are at annotationData/chipTypes/Hs_PromPR_v02/
cdf <- AffymetrixCdfFile$byChipType("Hs_PromPR_v02",verbose=-20)
cdfU <- getUniqueCdf(cdf,verbose=-20)

assumes appropriate files are at rawData/experiment/Hs_PromPR_v02/
cs <- AffymetrixCelSet$byName("experiment",cdf=cdf,verbose=-20)
mn <- MatNormalization(cs)
csMN <- process(mn,verbose=-50)
csMNU <- convertToUnique(csMN,verbose=-20)

#> getNames(cs)
[1] "samp1" "samp2" "samp3" "samp4"

design <- matrix(c(1,-1,rep(0,length(cs)-2)), ncol=1, dimnames=list(getNames(cs),"elut5_L-P"))

just get indices of chr7 here
ind <- getCellIndices(cdfU, unit = indexOf(cdfU, "chr7F"), unlist = TRUE, useNames = FALSE)

regs <- regionStats(csMNU, design, ind = ind, window = 500, verbose = TRUE)

End(Not run)

relativeCN Calculate and Segment Relative Copy Number From Sequencing
Counts

Description

This function uses the GCadjustCopy function to convert a matrix of count data into absolute copy
number estimates, then calculates the log2 fold change ratio and segments these values.

relativeCN 67

Usage

S4 method for signature 'data.frame,matrix'
relativeCN(input.windows, input.counts, gc.params = NULL,

..., verbose = TRUE)
S4 method for signature 'GRanges,matrix'

relativeCN(input.windows, input.counts, gc.params = NULL,
..., verbose = TRUE)

Arguments

input.windows A data.frame with (at least) columns chr, start, and end, or a GRanges ob-
ject.

input.counts A matrix of counts. The first column must be for the control state, and the
second column must be for the treatment state.

gc.params A GCAdjustParams object, holding parameters related to mappability and GC
content correction of read counts, or NULL, if GC content correction is not
desired.

... Further parameters passed to segment function in DNAcopy package, and also
the segment.sqrt parameter to absoluteCN.

verbose Whether to print the progess of processing.

Details

The algorithm used to call the copy number regions is Circular Binary Segmentation (Olshen et
al. 2004). Weights for each window, that are the inverse of the variance, calculated with the delta
method, are always used. Windows or regions that were not in the segmentation result are given the
value NA.

If gc.params is NULL, then no correction for mappability or GC content is done. This can be
done when the bias in both treatment and control samples is assumed to be equal. If gc.params is
specified, then absolute copy numbers are estimated with GCadjustCopy for each condition, which
corrects for mappability and then GC content, before estimating absolute copy numbers. The ratio
of estimated absolute copy numbers is segmented, to calculate relative copy numbers.

Value

If gc.params was given, then a AdjustedCopyEstimate object. Otherwise, a CopyEstimate ob-
ject. The copy number ratios are on the linear scale, not log2.

Author(s)

Dario Strbenac

References

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary segmentation
for the analysis of array-based DNA copy number data. Biostatistics 5: 557-572

68 ScoresList

Examples

inputs <- data.frame(chr = c("chr1", "chr1", "chr1", "chr2", "chr2"),
start = c(1, 50001, 100001, 1, 10001),

end = c(50000, 100000, 150000, 10000, 20000))
counts <- matrix(c(25, 39, 3, 10, 22, 29, 38, 5, 19, 31), nrow = 5)
colnames(counts) <- c("Control", "Treatment")
relativeCN(inputs, input.counts = counts, p.method = "perm")

samplesList Short Reads from Cancer and Normal

Description

Short reads that mapped to chromosome 21 in an Illumina sequencing experiment that was looking
for differences between healthy epithelial and prostate cancer cells. The DNA was immunoprecipi-
tated by a DNA methylation binding antibody.

Usage

samples.list.subset

Format

A GRangesList.

ScoresList Container for featureScores() output.

Description

Contains a list of tables of sequencing coverages or array intensities, and the parameters that were
used to generate them.

Accessors

In the following code snippets, x is a ScoresList object.

names(x), names(x) <- value Gets and sets the experiment type names.
tables(x) Gets the list of score matrices.
length(x) Gets the number of score matrices.

Subsetting

In the following code snippets, x is a ScoresList object.

x[i] Creates a ScoresList object, keeping only the i matrices.
subsetRows(x, i = NULL) Creates a ScoresList object, keeping only the i features.

Author(s)

Dario Strbenac

sequenceCalc 69

sequenceCalc Find occurences of a DNA pattern

Description

Function to find all occurrences of a DNA pattern in given locations.

Usage

S4 method for signature 'GRanges,BSgenome'
sequenceCalc(x, organism, pattern, fixed = TRUE, positions = FALSE)
S4 method for signature 'data.frame,BSgenome'

sequenceCalc(x, organism, window = NULL, positions = FALSE, ...)

Arguments

x A data.frame, with columns chr and position, or instead of the column
position there can be columns start, end, and strand, or a GRanges object
of the regions.

window Bases around the locations supplied in x that are in the window. Calculation
will consider windowSize/2-1 bases upstream, and windowSize/2 bases down-
stream.

organism The BSgenome object to calculate CpG density upon.
pattern The DNAString to search for.
fixed Whether to allow degenerate matches.
positions If TRUE FALSE
... Arguments passed into the GRanges method

Details

If the version of the data frame with the start, end, and strand columns is given, the window will be
created around the TSS.

Value

If positions is TRUE, a list of vectors of positions of matches in relation to the elements of x,
otherwise a vector of the number of matches for each element of x.

Author(s)

Aaron Statham

See Also

cpgDensityCalc, mappabilityCalc, gcContentCalc

Examples

require(BSgenome.Hsapiens.UCSC.hg18)
TSSTable <- data.frame(chr=paste("chr",c(1,2),sep=""), position=c(100000,200000))
sequenceCalc(TSSTable, 600, organism=Hsapiens, pattern=DNAString("CG"))

70 summarizeScores

setCNVOffsets Set the CNVOffsets of a QdnaData object

Description

A utility function to manually add CNV offset to a QdnaData object

Usage

setCNVOffsets(obj, cnv.offsets)

Arguments

obj a QdnaData object

cnv.offsets a matrix of offsets (presumably copy number)

Value

a QdnaData object

Author(s)

Mark Robinson

See Also

QdnaData

Examples

library(Repitools)
qd <- QdnaData(counts=counts, regions=gb, design=design,
neutral=(regs=="L=4 P=2"))
qd <- setCNVoffsets(qd, cn)

summarizeScores Subtract scores of different samples.

Description

Based on a design matrix, scores matrices are subtracted, and a new ScoresList is returned, with
the scores of the contrasts in it.

Usage

S4 method for signature 'ScoresList,matrix'
summarizeScores(scores.list, design, verbose = TRUE)

writeWig 71

Arguments

scores.list A ScoresList object describing the coverage or intensity scores of a set of
samples.

design A matrix that contains only -1, 0, or 1.

verbose Whether to print a statement explaining the function was called.

Value

A ScoresList object holding the scores of the contrasts that were specified by the design matrix.

Author(s)

Dario Strbenac

Examples

data(chr21genes)
data(samplesList) # Loads 'samples.list.subset'.

fs <- featureScores(samples.list.subset[1:2], chr21genes, up = 2000, down = 1000,
freq = 500, s.width = 500)

d.matrix <- matrix(c(-1, 1))
colnames(d.matrix) <- "IP-input"
summarizeScores(fs, d.matrix)

writeWig Writes sequencing data out into wiggle files

Description

Writes sequencing data out into wiggle files

Usage

S4 method for signature 'AffymetrixCelSet'
writeWig(rs, design=NULL, log2.adj=TRUE, verbose=TRUE)
S4 method for signature 'GRangesList'

writeWig(rs, seq.len = NULL, design=NULL, sample=20, drop.zero=TRUE, normalize=TRUE, verbose=TRUE)

Arguments

rs The sequencing or array data.

design design matrix specifying the contrast to compute (i.e. the samples to use and
what differences to take)

log2.adj whether to take log2 of array intensities.

verbose Whether to write progress to screen

seq.len If sequencing reads need to be extended, the fragment size to be used

sample At what basepair resolution to sample the genome at

drop.zero Whether to write zero values to the wiggle file - TRUE saves diskspace

normalize Whether to normalize each lane to its total number of reads, TRUE is suggested

72 writeWig

Details

A wiggle file is created for each column in the design matrix (if design is left as NULL, then a file
is created for each array/lane of sequencing). The filenames are given by the column names of the
design matrix, and if ending in "gz" will be written out as a gzfile.

Value

Wiggle file(s) are created

Author(s)

Aaron Statham

Examples

#See examples in the manual

Index

∗ classes
BayMethList, 14

∗ datasets
chr21genes, 20
expr, 35
hcRegions, 48
samplesList, 68

∗ programming
empBayes, 31
hyperg2F1_vec, 49
maskOut, 55
methylEst, 57

[,BayMethList,ANY,missing,ANY-method
(BayMethList), 14

[,ClusteredScoresList,ANY,missing,ANY-method
(ClusteredScoresList), 23

[,ScoresList,ANY,missing,ANY-method
(ScoresList), 68

[,SequenceQCSet,ANY,missing,ANY-method
(FastQC-class), 35

abcdDNA, 3
absoluteCN, 4, 6, 23, 27, 42, 43, 67
absoluteCN,data.frame,matrix,GCAdjustParams-method

(absoluteCN), 4
absoluteCN,GRanges,matrix,GCAdjustParams-method

(absoluteCN), 4
AdjustedCopyEstimate, 6, 22, 42, 67
AdjustedCopyEstimate,numeric,GRanges,numeric,numeric,matrix,list,matrix,character-method

(AdjustedCopyEstimate), 6
AdjustedCopyEstimate-class

(AdjustedCopyEstimate), 6
AffymetrixCdfFile, 6
AffymetrixCdfFile-class

(AffymetrixCdfFile), 6
AffymetrixCelSet, 7
AffymetrixCelSet-class

(AffymetrixCelSet), 7
annoDF2GR, 7
annoDF2GR,data.frame-method

(annoDF2GR), 7
annoGR2DF, 8
annoGR2DF,GRanges-method (annoGR2DF), 8
annotationBlocksCounts, 9, 11, 12, 45

annotationBlocksCounts,ANY,data.frame-method
(annotationBlocksCounts), 9

annotationBlocksCounts,character,GRanges-method
(annotationBlocksCounts), 9

annotationBlocksCounts,GRanges,GRanges-method
(annotationBlocksCounts), 9

annotationBlocksCounts,GRangesList,GRanges-method
(annotationBlocksCounts), 9

annotationBlocksLookup, 10, 12, 13, 18
annotationBlocksLookup,data.frame,data.frame-method

(annotationBlocksLookup), 10
annotationBlocksLookup,data.frame,GRanges-method

(annotationBlocksLookup), 10
annotationCounts, 9, 11
annotationCounts,ANY,data.frame-method

(annotationCounts), 11
annotationCounts,ANY,GRanges-method

(annotationCounts), 11
annotationLookup, 11, 12, 18, 53
annotationLookup,data.frame,data.frame-method

(annotationLookup), 12
annotationLookup,data.frame,GRanges-method

(annotationLookup), 12

BAM2GenomicRanges, 13
BAM2GRanges (BAM2GenomicRanges), 13
BAM2GRanges,character-method

(BAM2GenomicRanges), 13
BAM2GRangesList (BAM2GenomicRanges), 13
BAM2GRangesList,character-method

(BAM2GenomicRanges), 13
Basic_Statistics (FastQC-class), 35
Basic_Statistics,FastQC-method

(FastQC-class), 35
Basic_Statistics,SequenceQC-method

(FastQC-class), 35
Basic_Statistics,SequenceQCSet-method

(FastQC-class), 35
BayMethList, 14
BayMethList,GRanges,matrix,matrix,numeric-method

(BayMethList), 14
BayMethList-class (BayMethList), 14
binPlots, 16

73

74 INDEX

binPlots,ScoresList-method (binPlots),
16

blocks (ChromaResults-class), 22
blocks,ChromaResults-method

(ChromaResults-class), 22
blocksStats, 17
blocksStats,ANY,data.frame-method

(blocksStats), 17
blocksStats,ANY,GRanges-method

(blocksStats), 17
BSgenome, 38, 42, 54

checkProbes, 19
checkProbes,data.frame,data.frame-method

(checkProbes), 19
checkProbes,GRanges,GRanges-method

(checkProbes), 19
chr21genes, 20
ChromaBlocks, 20, 22
ChromaBlocks,GRangesList,GRangesList-method

(ChromaBlocks), 20
ChromaResults, 21
ChromaResults (ChromaResults-class), 22
ChromaResults-class, 22
chromosomeCNplots, 22
chromosomeCNplots,AdjustedCopyEstimate-method

(chromosomeCNplots), 22
chromosomeCNplots,CopyEstimate-method

(chromosomeCNplots), 22
class:ChromaResults

(ChromaResults-class), 22
class:FastQC (FastQC-class), 35
class:QdnaData (QdnaData), 64
class:RegionStats (regionStats), 65
class:SequenceQC (FastQC-class), 35
class:SequenceQCSet (FastQC-class), 35
ClusteredScoresList, 23, 25
ClusteredScoresList,ScoresList-method

(ClusteredScoresList), 23
ClusteredScoresList-class

(ClusteredScoresList), 23
clusterPlots, 24
clusterPlots,ClusteredScoresList-method

(clusterPlots), 24
clusterPlots,ScoresList-method

(clusterPlots), 24
clusters (ClusteredScoresList), 23
clusters,ClusteredScoresList-method

(ClusteredScoresList), 23
control (BayMethList), 14
control,BayMethList-method

(BayMethList), 14
control<- (BayMethList), 14

control<-,BayMethList-method
(BayMethList), 14

CopyEstimate, 5, 6, 22, 27, 43, 67
CopyEstimate,GRanges,matrix,GRangesList,character-method

(CopyEstimate), 27
CopyEstimate-class (CopyEstimate), 27
cpgBoxplots, 27
cpgBoxplots,AffymetrixCelSet-method

(cpgBoxplots), 27
cpgBoxplots,matrix-method

(cpgBoxplots), 27
cpgDens (BayMethList), 14
cpgDens,BayMethList-method

(BayMethList), 14
cpgDens<- (BayMethList), 14
cpgDens<-,BayMethList-method

(BayMethList), 14
cpgDensityCalc, 28, 69
cpgDensityCalc,data.frame,BSgenome-method

(cpgDensityCalc), 28
cpgDensityCalc,GRanges,BSgenome-method

(cpgDensityCalc), 28
cpgDensityCalc,GRangesList,BSgenome-method

(cpgDensityCalc), 28
cpgDensityPlot, 29
cpgDensityPlot,GRangesList-method

(cpgDensityPlot), 29
cutoff (ChromaResults-class), 22
cutoff,ChromaResults-method

(ChromaResults-class), 22

determineOffset, 30

empBayes, 31
enrichmentCalc, 33
enrichmentCalc,GRanges-method

(enrichmentCalc), 33
enrichmentCalc,GRangesList-method

(enrichmentCalc), 33
enrichmentPlot, 34
enrichmentPlot,GRangesList-method

(enrichmentPlot), 34
expr, 35

FastQC-class, 35
FDRTable (ChromaResults-class), 22
FDRTable,ChromaResults-method

(ChromaResults-class), 22
featureBlocks, 36
featureBlocks,data.frame-method

(featureBlocks), 36
featureBlocks,GRanges-method

(featureBlocks), 36

INDEX 75

featureScores, 16, 23, 24, 26, 37, 63
featureScores,ANY,data.frame-method

(featureScores), 37
featureScores,ANY,GRanges-method

(featureScores), 37
findClusters, 39
fOffset (BayMethList), 14
fOffset,BayMethList-method

(BayMethList), 14
fOffset<- (BayMethList), 14
fOffset<-,BayMethList-method

(BayMethList), 14

GCadjustCopy, 4, 5, 41, 66, 67
GCadjustCopy,data.frame,matrix,GCAdjustParams-method

(GCadjustCopy), 41
GCadjustCopy,GRanges,matrix,GCAdjustParams-method

(GCadjustCopy), 41
GCAdjustParams, 5, 41, 42, 67
GCAdjustParams,BSgenome,MappabilitySource-method

(GCAdjustParams), 42
GCAdjustParams-class (GCAdjustParams),

42
GCbiasPlots, 43
GCbiasPlots,AdjustedCopyEstimate-method

(GCbiasPlots), 43
gcContentCalc, 44, 69
gcContentCalc,data.frame,BSgenome-method

(gcContentCalc), 44
gcContentCalc,GRanges,BSgenome-method

(gcContentCalc), 44
genomeBlocks, 9, 12, 45
genomeBlocks,BSgenome-method

(genomeBlocks), 45
genomeBlocks,numeric-method

(genomeBlocks), 45
genQC, 46
genQC,character-method (genQC), 46
genQC,SequenceQCSet-method (genQC), 46
getProbePositionsDf, 47
getProbePositionsDf,AffymetrixCdfFile-method

(getProbePositionsDf), 47
getSampleOffsets, 47, 64
GRanges, 6, 7, 14, 23, 27, 37
GRangesList, 6, 27, 56, 68

hcRegions, 48
hyperg2F1_vec, 49

legend, 63
length (BayMethList), 14
length,BayMethList-method

(BayMethList), 14

length,ScoresList-method (ScoresList),
68

loadPairFile, 50, 52, 62
loadSampleDirectory, 50, 51, 62

makeWindowLookupTable, 13, 52
mappabilityCalc, 53, 69
mappabilityCalc,data.frame,MappabilitySource-method

(mappabilityCalc), 53
mappabilityCalc,GRanges,MappabilitySource-method

(mappabilityCalc), 53
MappabilitySource, 54
MappabilitySource-class

(MappabilitySource), 54
maskEmpBayes (BayMethList), 14
maskEmpBayes,BayMethList-method

(BayMethList), 14
maskEmpBayes<- (BayMethList), 14
maskEmpBayes<-,BayMethList-method

(BayMethList), 14
maskOut, 55
mergeReplicates, 39, 56
mergeReplicates,GRangesList-method

(mergeReplicates), 56
methEst (BayMethList), 14
methEst,BayMethList-method

(BayMethList), 14
methEst<- (BayMethList), 14
methEst<-,BayMethList-method

(BayMethList), 14
methylEst, 57
Mismatches (FastQC-class), 35
Mismatches,SequenceQC-method

(FastQC-class), 35
Mismatches,SequenceQCSet-method

(FastQC-class), 35
MismatchTable (FastQC-class), 35
MismatchTable,SequenceQC-method

(FastQC-class), 35
MismatchTable,SequenceQCSet-method

(FastQC-class), 35
multiHeatmap, 58

names,ScoresList-method (ScoresList), 68
names<-,ScoresList-method (ScoresList),

68
ncontrol (BayMethList), 14
ncontrol,BayMethList-method

(BayMethList), 14
nsampleInterest (BayMethList), 14
nsampleInterest,BayMethList-method

(BayMethList), 14

76 INDEX

Overrepresented_sequences
(FastQC-class), 35

Overrepresented_sequences,FastQC-method
(FastQC-class), 35

Overrepresented_sequences,SequenceQC-method
(FastQC-class), 35

Overrepresented_sequences,SequenceQCSet-method
(FastQC-class), 35

p.adjust, 18
Per_base_GC_content (FastQC-class), 35
Per_base_GC_content,FastQC-method

(FastQC-class), 35
Per_base_GC_content,SequenceQC-method

(FastQC-class), 35
Per_base_GC_content,SequenceQCSet-method

(FastQC-class), 35
Per_base_N_content (FastQC-class), 35
Per_base_N_content,FastQC-method

(FastQC-class), 35
Per_base_N_content,SequenceQC-method

(FastQC-class), 35
Per_base_N_content,SequenceQCSet-method

(FastQC-class), 35
Per_base_sequence_content

(FastQC-class), 35
Per_base_sequence_content,FastQC-method

(FastQC-class), 35
Per_base_sequence_content,SequenceQC-method

(FastQC-class), 35
Per_base_sequence_content,SequenceQCSet-method

(FastQC-class), 35
Per_base_sequence_quality

(FastQC-class), 35
Per_base_sequence_quality,FastQC-method

(FastQC-class), 35
Per_base_sequence_quality,SequenceQC-method

(FastQC-class), 35
Per_base_sequence_quality,SequenceQCSet-method

(FastQC-class), 35
Per_sequence_GC_content (FastQC-class),

35
Per_sequence_GC_content,FastQC-method

(FastQC-class), 35
Per_sequence_GC_content,SequenceQC-method

(FastQC-class), 35
Per_sequence_GC_content,SequenceQCSet-method

(FastQC-class), 35
Per_sequence_quality_scores

(FastQC-class), 35
Per_sequence_quality_scores,FastQC-method

(FastQC-class), 35

Per_sequence_quality_scores,SequenceQC-method
(FastQC-class), 35

Per_sequence_quality_scores,SequenceQCSet-method
(FastQC-class), 35

plotClusters, 60
plotClusters,data.frame-method

(plotClusters), 60
plotClusters,GRanges-method

(plotClusters), 60
plotQdnaByCN, 61, 64
priorTab (BayMethList), 14
priorTab,BayMethList-method

(BayMethList), 14
priorTab<- (BayMethList), 14
priorTab<-,BayMethList-method

(BayMethList), 14
processNDF, 50–52, 62
profilePlots, 63
profilePlots,ScoresList-method

(profilePlots), 63

QdnaData, 4, 48, 61, 64, 64, 70
QdnaData-class (QdnaData), 64

readFastQC (FastQC-class), 35
regions (ChromaResults-class), 22
regions,ChromaResults-method

(ChromaResults-class), 22
regionStats, 65
regionStats,AffymetrixCelSet-method

(regionStats), 65
regionStats,matrix-method

(regionStats), 65
RegionStats-class (regionStats), 65
relativeCN, 6, 23, 27, 43, 66
relativeCN,data.frame,matrix-method

(relativeCN), 66
relativeCN,GRanges,matrix-method

(relativeCN), 66

sampleInterest (BayMethList), 14
sampleInterest,BayMethList-method

(BayMethList), 14
sampleInterest<- (BayMethList), 14
sampleInterest<-,BayMethList-method

(BayMethList), 14
samplesList, 68
scanBam, 14
ScanBamParam, 14
ScoresList, 16, 23, 25, 39, 63, 68, 71
ScoresList-class (ScoresList), 68
segment, 5, 67

INDEX 77

Sequence_Duplication_Levels
(FastQC-class), 35

Sequence_Duplication_Levels,FastQC-method
(FastQC-class), 35

Sequence_Duplication_Levels,SequenceQC-method
(FastQC-class), 35

Sequence_Duplication_Levels,SequenceQCSet-method
(FastQC-class), 35

Sequence_Length_Distribution
(FastQC-class), 35

Sequence_Length_Distribution,FastQC-method
(FastQC-class), 35

Sequence_Length_Distribution,SequenceQC-method
(FastQC-class), 35

Sequence_Length_Distribution,SequenceQCSet-method
(FastQC-class), 35

sequenceCalc, 69
sequenceCalc,data.frame,BSgenome-method

(sequenceCalc), 69
sequenceCalc,GRanges,BSgenome-method

(sequenceCalc), 69
SequenceQC, 46
SequenceQC-class (FastQC-class), 35
SequenceQCSet (FastQC-class), 35
SequenceQCSet-class (FastQC-class), 35
setCNVOffsets, 64, 70
show,AdjustedCopyEstimate-method

(AdjustedCopyEstimate), 6
show,BayMethList-method (BayMethList),

14
show,ChromaResults-method

(ChromaResults-class), 22
show,ClusteredScoresList-method

(ClusteredScoresList), 23
show,CopyEstimate-method

(CopyEstimate), 27
show,FastQC-method (FastQC-class), 35
show,QdnaData-method (QdnaData), 64
show,RegionStats-method (regionStats),

65
show,ScoresList-method (ScoresList), 68
show,SequenceQC-method (FastQC-class),

35
show,SequenceQCSet-method

(FastQC-class), 35
subsetRows (ScoresList), 68
subsetRows,ClusteredScoresList-method

(ClusteredScoresList), 23
subsetRows,ScoresList-method

(ScoresList), 68
summarizeScores, 70
summarizeScores,ScoresList,matrix-method

(summarizeScores), 70

tables (ScoresList), 68
tables,ScoresList-method (ScoresList),

68

windows (BayMethList), 14
windows,BayMethList-method

(BayMethList), 14
windows<- (BayMethList), 14
windows<-,BayMethList-method

(BayMethList), 14
writeWig, 71
writeWig,AffymetrixCelSet-method

(writeWig), 71
writeWig,GRangesList-method (writeWig),

71

	abcdDNA
	absoluteCN
	AdjustedCopyEstimate
	AffymetrixCdfFile
	AffymetrixCelSet
	annoDF2GR
	annoGR2DF
	annotationBlocksCounts
	annotationBlocksLookup
	annotationCounts
	annotationLookup
	BAM2GenomicRanges
	BayMethList
	binPlots
	blocksStats
	checkProbes
	chr21genes
	ChromaBlocks
	ChromaResults-class
	chromosomeCNplots
	ClusteredScoresList
	clusterPlots
	CopyEstimate
	cpgBoxplots
	cpgDensityCalc
	cpgDensityPlot
	determineOffset
	empBayes
	enrichmentCalc
	enrichmentPlot
	expr
	FastQC-class
	featureBlocks
	featureScores
	findClusters
	GCadjustCopy
	GCAdjustParams
	GCbiasPlots
	gcContentCalc
	genomeBlocks
	genQC
	getProbePositionsDf
	getSampleOffsets
	hcRegions
	hyperg2F1_vec
	loadPairFile
	loadSampleDirectory
	makeWindowLookupTable
	mappabilityCalc
	MappabilitySource
	maskOut
	mergeReplicates
	methylEst
	multiHeatmap
	plotClusters
	plotQdnaByCN
	processNDF
	profilePlots
	QdnaData
	regionStats
	relativeCN
	samplesList
	ScoresList
	sequenceCalc
	setCNVOffsets
	summarizeScores
	writeWig
	Index

